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Figure 1: This trigger-action program, built in Ply, tracks personal spending when new transactions are entered into the
program. By building up components based on camera and email inputs, the user creates a high-level “transaction detector”
using Ply’s code generation features. Similarly, the action taken when a new transaction is detected is a composition of a
spreadsheet ledger and an LED strip that progressively lights up as the total tracked amount increases.

Abstract
Trigger-action programming has been a success in end-user pro-

gramming. Traditionally, the simplicity of links between triggers

and actions limits the expressivity of such systems. LLM-based

code generation promises to enable users to specify more complex

behavior in natural language. However, users need appropriate

ways to understand and control this added expressive power. We

introduce Ply, a system that tackles this challenge through the

following techniques: (1) a layer abstraction that enables decom-

position into smaller building blocks; (2) generated visualizations

at each layer boundary to enable interrogation of the behavior of

generated code; and (3) generated customizable parameters, with

associated configuration UIs, to allow users to tune each layer’s

behavior. We offer a technical evaluation of Ply, demonstrating how
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custom programs can be authored and tested incrementally using

this layered trigger-action technique. Additionally, we describe a

first-use study with seven participants, demonstrating where and

how Ply’s generative features can affect how users build programs.
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1 Introduction
Trigger-action programming offers an elegant interface to construct

simple programs that result in customized behavior for software

or devices. In popular automation software such as IFTTT (If This

Then That) [28], trigger-action programs use a straightforward

model of computation: a single conditional statement, in which the

“this” and the “that” can be chosen from a list of various integrations

(for example: update your Android wallpaper every time you post a
photo on Instagram).

Such automations are simple to author, but they require an

“impedance match” between a trigger and an action — i.e., the data
sent from trigger to action is in a shared format, at a common level

of abstraction. When deeper customization is needed (for example:

update a spreadsheet of coastal locations visited every time you post a
photo of a beach on Instagram), the tools commonly require users to

write “glue code” to either combine multiple rules or resort to other

methods of programming (e.g., in a Turing-complete programming

language) through some escape hatch.

Code generation offered by large language models can serve to

author this glue code for trigger-action programs, allowing for data

from triggers to be mapped to input data for actions automatically

even when their native data formats or intended functionality do

not match exactly. However, such LLM-authored code, especially

when implementing nontrivial logic, can be difficult to specify,

understand or debug. Users need appropriate tools and handles to

understand and make changes to the computation that is being

performed in such code.

To tackle this challenge, we introduce Ply, a system that presents

a core trigger-action programming paradigm but incorporates LLM

code generation to enable a high degree of customization. Ply main-

tains the simplicity of a straightforward connection between a

trigger and action but provides a structure within which users can

enlist an LLM to specify the behavior of each trigger and action.

To assist with understandability and editability, Ply makes three

concrete contributions:

• It encourages program decomposition into “layer” abstrac-

tions,

• It automatically creates visualizations of event payloads at

layer boundaries to help users understand layer behavior

without having to read the underlying generated code, and

• It constructs ad hoc parametrization interfaces that allow

users to configure important dimensions of the behavior of

each layer without having to re-author it.

Through the combination of these features, Ply allows users to

develop, test, and tweak program components, exploring possibili-

ties for how data can be transformed and composed to discover and

achieve goals. This style of programming can support many use

cases, even those not traditionally considered in the trigger-action

programming model.

We demonstrate example programs that cover domains such

as smart home alerts, multimodal budget tracking, and slideshow

presentation assistance. Additionally, we report on a first-use study

with seven participants, demonstrating how Ply’s generative fea-

tures can affect how users build programs and discussing how users

handled errors and other unexpected behavior in Ply.

2 Related work
Ply builds on work in trigger-action programs, end-user program-

ming, and LLM-supported synthesis of code and user interfaces.

2.1 Directly mapping triggers to actions
Interoperable standards can facilitate the communication needed

to compose complex behavior between devices. “Tuplespace” plat-

forms such as the Event Heap [29] provide for such communication

through standardized I/O schemas, allowing for devices to sub-

scribe to known event types. The Event Heap was the foundation

of iStuff [8], a toolkit for authoring automation rules for ubiquitous

computing environments such as smart rooms. The Xbox Adaptive

Controller ecosystem [42] offers a pluggable interface that similarly

allows for one-to-one correspondences between hardware devices

and software actions.

Trigger-action programming systems, such as IFTTT (If This

Then That) [28], include external integrations that allow the user to

act as a “switchboard operator”, choosing how high-level triggers

from input integrations map to high-level actions. These systems

serve as platforms for users to customize their environments [52],

including smart homes [51], robot behavior [37], and DIY electron-

ics [2].

HCI researchers have investigated how users understand [27]

and debug [12, 19] trigger-action programs. Many techniques for

improving users’ understanding of their programs have been de-

veloped, including difference visualization [57], checks and simula-

tions in EUDebug [17], and increasing expressivity, e.g., by recom-

mending rule compositions [18].

The straightforward one-to-one mappings suggested by high-

level integration targets can be limited in customizability, however.

For example, a button-press integration that is designed to be used

in a one-to-one system may explicitly implement both a single-

press and a double-press event so that the user can bind actions

to either trigger. Alternatively, a system that allows custom code

to mediate triggers and actions would not need an explicit double-

press integration, since it could implement a double-press event

using just a single-press event handler and timers; this would permit

additional customization, e.g., a triple-press trigger. In addition, this

permits integrations to be simpler, offering a core set of composable

features rather than a large set of specific features. Where systems

like IFTTT support primarily commercial products [2], reducing

the amount of labor required to create external integrations for a

trigger-action system can improve the availability of integrations

even for lower-resourced projects. Some trigger-action systems

(including IFTTT) allow for small amounts of mediating code to

be interposed between trigger and action, so that these programs

resemble those developed in end-user programming contexts.

2.2 End-user programming
End-user programming has long been a means to enable users

to specify precise behavior involving both hardware [7, 25] and

software [11, 45]. Code in these systems takes many forms, such

as block-based programming [14, 32, 41], node-graph represen-

tations [21, 31], and sometimes text-based programs [38]. These

programming systems have seen widespread adoption, allowing

users to program more specific correspondences between devices
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(as in Home Assistant [5], Node-RED [21]). However, designing

complex behavior can be a difficult programming task, and pro-

gram representations in end-user programming tools may not be

well-suited for heavy programs.

Additionally, advances in promptable AI have encouraged deeper

integration between these AI models and end-user programming

systems. Intelligent sensor feeds have been in demand since before

it was practical to automate them; Zensors [36] demonstrated a

crowdsourcing-based approach that later inspired the AI-powered

Gensors project [39]. Now, end-user programming techniques have

begun to incorporate AI components, both in existing tools (re-

flected by integrations for Node-RED [44], Home Assistant [46],

and Google Sheets [1, 3]) and new tools [50]. Through chains of AI

components, more nuanced programs can be constructed [54].

2.3 LLM-supported code synthesis
Tools such as ChatGPT and Copilot have been studied extensively

in how they assist users to author code [9, 20, 40]. Further work

has explored interactions beyond simple back-and-forth chat for

developing programs. For example, Zamfirescu-Pereira et al. [56]

present Pail, a tool that allows users to explore complete program

design through more abstract representations of the decision space.

Frequently, code-generation systems focus on building and then

refining a full working application, using visibility of the full un-

derlying code as a fallback when users need to build understanding

of the generated program. Alternative approaches could encour-

age code to be built and solidified in stages, verifying individual

components before moving onto the next part of an application.

Ply offers this LLM-supported program decomposition supported

by visualization and parameterization UIs, permitting users to use

interactions beyond chat to compose their programs incremen-

tally. In Figure 2, we situate Ply among similar programming en-

vironments that support piecewise authorship and modification

of programs. ComfyUI [47] offers user-controlled, node-based pro-

gramming for AI data flows. CoLadder [55], like Ply, supports hier-

archical decomposition of programs, but focuses on programs that

use imperative code and linear data flows (compared to Ply’s event

publish-subscribe model), with data formats (e.g., dataframes) that

are straightforward to render intermediate outputs for. Instruct-

Pipe [58] provides users with fixed primitive nodes and uses LLMs

to compose these nodes. Ply instead asks users to take charge of

building their own node/layer graph, but uses LLMs to create layers
that implement steps described by the user, offering supporting

UIs for each new node. ChainForge [4], like Ply, mixes code- and

AI-powered nodes in a programming interface. Code generation is

available, but without visualized data transformations or real-time

data flows. Generated programs are used to construct and evaluate

prompts for prompt engineering, but the authored prompts (rather

than the programs themselves) are the ultimate system output.

2.4 Dynamic and malleable user interfaces
Dynamic user interfaces can be key tools for accessibility and cus-

tomization [22, 23]. LLM-based code generation has also inspired a

recent refocusing on dynamic creation of user interfaces.

Dynamic widgets can assist in exploring and visualizing datasets,

as highlighted by DynaVis [53]. Biscuit [15] further explores how

Program representa�on
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(with AI nodes [44])
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Figure 2: We situate Ply in typical use among other program-
ming tools that support authoring and joining together pro-
gram components. Most tools support both code-based and
AI-based program components; when generative AI powers
a component, prompts for these components may be sup-
plied by the user or generated by the tool. Ply additionally
generates components (layers) that incorporate both code ex-
ecution and AI in the same component. Some tools generate
links that connect components together (e.g., by generating
an entire node graph or program), where others depend on
the user to compose programs out of individual components.

ephemeral UIs can allow users to explore varying choices for data

transform they are interested in trying.

More recent work has looked into how user interfaces can be

generated and customized to support specific tasks. Cao et al. [13]

explore, through Jelly, how LLMs can generate data models that

inform the construction of user interfaces relevant to particular

tasks. Rather than relying entirely on user prompts to specify tasks,

Jelly determines an abstraction over the task, defining a domain

within which direct manipulation allows for fine-grained control

over task execution.

Min et al. [43] explore the generation of both overview interfaces

and detail interfaces through a system that customizes programs

by extracting and structuring information relevant to a particular

task. Users are able to choose and visualize exactly the information

that is most helpful to see while working toward their goals.

Ply’s approach embodies this genre of work through genera-

tion of parameterization datatypes and associated configuration

UIs, which allow the user to configure the particulars of more ab-

stract behavior, and through generation of glanceable interfaces

that quickly communicate salient features of program data.
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3 Ply User Experience
Ply’s interface, shown in Figure 3, consists of a large infinite canvas

on the left and a sidebar of components on the right. Users can

bring in components from the sidebar, using the canvas to lay out

and reorganize their work
1
.

The sidebar includes a large set of built-in sensors and actuators
that can be used in trigger-action programs.

Sensors in Ply are components that provide information to Ply
through dispatched events with data payloads. The word “sensor” is

used somewhat metaphorically; these components need not corre-

spond to real-world physical sensors, but may refer to anything that

dispatch events to provide information. Example sensors include: a

sensor that informs Ply about button presses on a physical remote

control, a sensor providing information about the presentation state

of a slideshow, and a sensor that offers a live webcam feed.

Actuators, likewise, receive information from Ply to take exter-

nal action (which may or may not correspond to physical action).

Example actuators include: smart lightbulb or power outlet control,

moving to a different slide in a slideshow, or displaying information

on a screen.

Sensors and actuators may integrate into Ply from many sources,

positioning Ply as a hub for user-controlled interoperability be-

tween a broad range of devices and software programs.

3.1 Linking sensors to actuators
Ply attempts to capture the elegance of straightforward trigger-

action pairs while allowing users to invoke LLM code synthesis to

customize the specific behavior of triggers and actions. To create a

trigger-action program, users can create a linkage between one

sensor, which produces the trigger, and one actuator, which carries

out an action.

When creating a linkage, users write a natural language descrip-

tion of how they want the triggering sensor to affect the actuator.

Linkages are themselves entities within Ply, tracking not only the

sensor and actuator being linked but also details about exactly how

the linkage should be carried out.

For example, consider a user who wishes to use buttons on a

physical remote to toggle a light on and off and control its bright-

ness. The user creates a linkage between the remote sensor and the

light, shown in Figure 3A.

Linkage Remote Buttons→ Lightbulb (with color)

“let me toggle the light and control brightness”

Ply implements this correspondence using LLM code synthesis.

Large refinements to the behavior of the linkage can be made

through a chat interface, which can also answer questions about

how the linkage works. For example, a user could ask for brightness

control to work continuously while holding down the buttons, not

just when clicking them.

Multiple linkages can be created within a Ply workspace, so that

the workspace represents a collection of trigger-action pairs. Sen-

sors and actuators can be used in multiple places and can therefore

be instantiated multiple times on the canvas. Every instance of a

particular sensor or actuator on the canvas shares the same event

1
Ply’s primary interactions are inspired by Infinite Craft: https://neal.fun/infinite-craft/

data as other instances of that same sensor or actuator. Linkages

are instantiated exactly once on the canvas.

3.2 Linkage parameterization
When building a linkage, Ply identifies parameters of the imple-

mentation that may be tweaked to customize the behavior of the

linkage. In this example, the generated linkage has two parameters:

“Brightness Step” (how much the brightness changes with each

button press) and “Hold Repeat Interval” (time between repeated

actions when a button is held down). For many modifications, these

parameters can be used in place of full chat-based refinement.

A customization interface is generated automatically for these

configuration options, shown in a detail viewmodal for that linkage.

3.3 Sensor abstraction
3.3.1 Building sensor layers. Ply provides users with tools to build

components incrementally, creating new layers on top of existing

components that “wrap” the behavior of underlying layers.

For example, suppose a user wants to use other buttons of the

remote to control the lightbulb’s color. First, the user creates a

“color chooser” sensor, a layer that dispatches events representing

different colors which will serve as an event source later. By clicking

the “Create layered sensor” button on the canvas item for the sensor

representing the remote’s buttons, the user can build up some

additional behavior:

Sensor Rainbow Color Cycler

(layered on Remote Buttons)
“left and right buttons cycle through colors of the rainbow”
This creates a new sensor that is “layered on top” of the base sen-

sor. This new sensor, which has been automatically titled “Rainbow

Color Cycler”, has its code implementation generated by an LLM. It

will listen for events from the underlying button sensor and cycle

through different colors, emitting events that each contain data

corresponding to a color. The old underlying sensor, an immediate

dependency of the new sensor, now appears as a layer rendered

behind the new sensor in the Ply interface and can be brought back

onto the canvas for further use.

3.3.2 Sensor parameterizations. Like linkages, sensor layers also
include a parameterization, used within the layer’s implemen-

tation code, and a customization interface for these parameters.

Parameters may be used to alter many aspects of a sensor’s behav-

ior. In our testing, Ply has generated parameterizations that allow

users to:

• choose how sensor input is handled, like with button map-

pings or thresholds;

• customize sensor outputs (e.g., which colors are provided by

the “Rainbow Color Cycler”);

• change constants used by code (e.g., a debounce or polling
timer); and

• customize AI prompts used by ‘smart’ layers.

3.3.3 Chat refinement. Sensors, like linkages, can additionally be

refined through a chat interface when parameterization is insuf-

ficient. For example, the user can write “actually, shuffle through

the colors instead” so that the sensor will choose random colors

instead of cycling in order.

https://neal.fun/infinite-craft/


Generative Trigger-Action Programming with Ply UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea

Figure 3: A screenshot of the main Ply interface. On the left is the Ply canvas, where sensors, actuators, and linkages can be
created, removed, and manipulated. A: A linkage is being created between a base sensor, Remote buttons, and a base actuator,
Lightbulb (with color); B: Two sensors have been created already, and are on the canvas; C: The user is combining these two
sensors into one larger sensor. On the right (D) is a list of all sensors and actuators that can be pulled onto the canvas, including
both the external integrations and the new layers that have been introduced by the user.

Sensor layers, unlike linkages, choose their own output payload’s

datatype when created. Sensors will be updated in-place where

possible, but updates that would change the structure of the output

payload will instead fork and construct a new sensor, rather than

risking an incompatibility with other sensors or linkages that use

this sensor as a dependency.

3.3.4 Automatic decomposition. When building a new sensor layer,

Ply will sometimes decompose the request into simpler sensors

that are combined together automatically to produce the requested

sensor. This feature tends to activate for prompts with more ad-

vanced processing, e.g., “choose a random color, then also find its

complementary color” — although there is some nondeterminism

in when the system will break such a query down into multiple

sensors. This allows Ply to leverage its existing layer features to

offer intermediate visibility and control into complex computations,

even when not explicitly requested by users. Intermediate depen-

dencies are unobtrusively offered as additional components in the

sidebar.

3.4 Sensor data visualization
Each sensor is accompanied by a glanceable visualization of the

sensor’s output payloads on the Ply canvas. This visualization is

specific to the sensor and its output type, showing the most critical

information for evaluating whether the sensor is behaving as ex-

pected. A detail view also shows an extended visualization, which

is generated to show the full output payload of the sensor.

In our example, the user can now press the buttons that cycle

through the sensor’s colors, verifying this slice of behavior before

using it to affect the light’s color. This can be seen in Figure 3B.

3.5 Bundling sensors
When creating a sensor layer, the user can drag-and-drop multiple

sensors together to create a layer that handles events from multiple

dependencies. In Figure 3C, the user is creating a layered sensor

that accepts a color either from spoken word (built on top of the

“Transcribed Microphone” sensor) or from the remote’s buttons:

Sensor Combined Color Sensor

(layered on Rainbow Color Cycler, Color Word Detector)
“most recent color from either sensor”

This sensor layer listens for events from any dependency, then

dispatches event payloads of its own. Now, this sensor is a single,

high-level trigger that represents a color from either source; it

has its own visualization and parameterization. It can be tested

independently of a trigger-action linkage, and each underlying

layer can itself be isolated and tested by viewing its visualization.

3.6 Actuator abstraction
Layered actuators, mirroring layered sensors, transform input pay-

loads so that appropriate events can be further dispatched to one or

more downstream actuators. This layering can be used to present

a simplified “façade” interface of a complex actuator; for example,

a multicolor lamp may be layered so that it only lights up purple,

presenting a simplified “on/off” input payload type rather than re-

quiring a full color value every time. These layers can also be used to

take multiple actions in response to one sensor event, by bundling

two actuators together before inserting them into a linkage.

We have generally found during our own use of this feature that

this layering is less intuitive to use than sensor layering, so we

did not flesh out this feature or emphasize it in our first-use study.

Equivalent behavior can often be achieved just by layering sensors



UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea Aveni et al.

Runtime Server

Server
AI models via reagent

TypeScript interpreter

Claude 3.7 Sonnet (thinking)

OpenAI o3-mini

DeepSeek-R1-Distill-Llama-70B

Ply’s Frontend

System Integrations 

Workspace 

management 

server

TypeScript 

compilation

Server

Builtins 

Color.js

MediaPipe

RealtimeSTT

LLM

Vision LM

Text-to-image

GPT-4o-mini


FLUX.1 
[schnell]

MQTT Server

Zigbee2MQTT

Nodemation

Smart bulb

Google Docs 

Remote

Google Sheets

GMail

Outlet

Google Calendar

Custom 

Integrations Lockbox

Google slides

iPad 

Figure 4: Ply’s system architecture. The runtime server ex-
ecutes the implementation code for sensors, actuators, and
linkages, coordinating with a central MQTT server that ex-
changes messages between the server and external integra-
tions. AI models are used both in layer creation and in the
builtin code that can be used by a layer.

and (if necessary) using more than one linkage on the Ply canvas,

leaving the linkage to perform the final work of transforming the

sensor’s output payload into an actuator input payload.

3.7 Layer-based abstraction
Each layer in Ply tracks its dependencies; sensors receive data

from their dependencies, actuators push data to their dependencies,
and linkages each refer to exactly one sensor and one actuator

dependency. Collections of layers and linkages in Ply are isomorphic

to node graphs in node-based programming languages.

However, Ply presents layers differently than typical node-based

tools, which show computation as a flow that transmits data from

node to node along edges. When a layer is on Ply’s canvas, its

dependencies are not directly shown; users may reintroduce these

dependencies to the canvas manually, but layers are otherwise

drawn in a way meant to signal that they are self-contained. This

design draws inspiration from abstraction layers in system design,

e.g., the OSI model for network design; once lower-level layers

have been comfortably tested and finalized, users can use these

layers as black boxes without thinking about the details of their

implementations. The final act of linking a sensor to an actuator is

much like drawing an edge in a node-based tool, except that the

user builds up and organizes each linkage so that one representative
trigger is linked to one representative action.

4 Technical implementation
Ply consists of a user interface for creating and modifying trigger-

action programs and a server that coordinates communication

among system components. The full system architecture is dia-

grammed in Figure 4.

4.1 Code generation
Ply uses a server program written in TypeScript to make code

generation requests to a large language model and to execute the

resulting code, which passes messages to and from sensors and

actuators. Layers in Ply include a large amount of structured in-

formation (see Figure 5 for the metadata stored in a sensor), some

in natural language and some in code. By ensuring that this rich

metadata is populated for each new linkage or layer created, Ply

enables further generation of working glue code, visualizations,

and parameter editing interfaces.

4.1.1 Provided context. When Ply creates new layers or linkages,

prompts include the full documentation of dependency sensors

and/or actuators. The LLM is prompted to generate a TypeScript

function implementing the requested behavior.

Linkages can subscribe to their sensor dependency and publish

to their actuator. Sensors can subscribe to any of their dependency

sensors and publish to their output, and actuators correspondingly

subscribe to their input and publish to any of their dependency

actuators. Linkages, sensors, and actuators may also store persistent

data between code invocations.

In addition, linkages and sensor/actuator layers are permitted

to use “builtins” that implement commonly-needed functionality.

These builtins are documented in the prompt. Ply includes some

“core” builtins in every request:

• An LLM function, which takes a text prompt and returns a

string response (useful for text processing and basic world

knowledge); this was implemented using gpt-4o-mini for
its fast response time.

• A vision-language model function, also using gpt-4o-mini,
which takes in a text prompt and a single image, and outputs

text.

• The underscore.js library, with a particular focus in docu-

mentation on debounce and throttle functions, commonly

used to avoid processing events in quick succession.

Depending on the specific user request, Ply additionally selects

(using a quick gpt-4o-mini invocation) other libraries from our

expanded set of builtins that may be useful; chosen libraries have

documentation included in the main code generation prompt. In

our prototype, these additional builtins are:

• Text-to-image generation using the FLUX.1 [schnell]model [35]

• Color manipulation using Color.js [16]
• Real-time audio transcription usingWhisper, through Real-
timeSTT [10]

• Real-time hand gesture detection using MediaPipe [24]

In a safe, sandboxed environment, Ply could even be permitted

to import libraries directly from a package manager repository, en-

abling a much wider range of capabilities. Because Ply is grounded

in code synthesis, its capabilities grow with its underlying code

generation system.

These builtins enable Ply to invoke AI models not only at the

time of linkage or layer creation, but also at runtime as the system

processes events. For example, a sensor that uses a camera as a

dependency can use a vision-language model to identify objects

in the camera’s field of view by generating code that prompts the

model at runtime with the input image, an appropriate text prompt,
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Figure 5: The anatomy of a sensor. Sensor layers in Ply contain rich metadata, used both to assist further code generation and
to provide user visibility and control.

and a description of the desired output format. Often, prompts to

language models are included by Ply as parameters for the user to

customize, which offers direct control over these flexible, language-

based components of programs.

Ply also includes recent event payloads alongside sensor docu-

mentation, allowing users to ground requests in actual data that

they have seen a dependency sensor include in an event payload.

Model responses for new layers include additional natural lan-

guage documentation describing the generated layer so that link-

ages or layers created later have sufficient context to use the new

layer. The full set of metadata stored in a sensor layer can be seen

in Figure 5.

Each sensor layer is accompanied by an output datatype speci-

fied in TypeScript, chosen by the code generation step. Generated

natural language documentation can also help to elucidate seman-

tic information about sensor output formats, beyond what simple

datatypes communicate (e.g., specifying “a color name” rather than

just string). Further layers will be generated without access to the
direct code implementation of dependencies, which promotes inter-

operability; this architecture would support a broader ecosystem of

layers that are implemented even in different languages or even by

non-programmatic means (e.g., crowdsourcing, as in [36], or user

intervention).

4.1.2 Generating visualizations. Ply generates glanceable visualiza-
tions for sensor payloads, authoring React code based on the sensor

documentation. React components are populated in the Ply canvas

with real-time data from sensors, showing event payloads with

custom visuals rather than simply showing the raw data associated

with each event. Some information about the payload structure is

thus abstracted away from the user, who can subsequently prompt

for new programs in terms of the high-level information presented

by the sensor, rather than referencing specific components of output

JSON objects.

Since these glanceable components do not always show all of

the information from the payload in the available space, Ply also

generates “extended” visualizations that appear in the sensor’s

detail view.

4.1.3 Choosing and configuring parameters. When creating link-

ages and sensors, Ply instructs the code generation LLM to choose

and integrate a structured set of configurable parameters that al-

ter the code’s behavior. Parameters may come explicitly from the

prompt (e.g., “translate the input text to English” may have a tar-
getLanguage parameter) or be implicit (e.g., a choice of a literal or
interpretive translation). Thesemay be primitive types (like numeric,

string, and Boolean values), or they may be more complex struc-

tured values (like color values, lookup tables, and lists). The LLM

also provides a set of default values for this configuration. Then,

Ply creates a React component that allows the user to configure

these parameters interactively.

Parameter UIs are generated using an LLM prompt shared be-

tween linkages and sensors. This prompt requests a standalone

React component that can be used to update the linkage or sen-

sor’s parameters object. These configuration UIs may use complex

structure (e.g., for a lookup table) and rich built-in browser compo-

nents (e.g., a color picker) so that even similarly complex parameter

shapes can be customized.

4.1.4 Refinement. When users send a chat message in an existing

linkage or sensor’s detail view, the original prompt is included,

alongside a subsequent prompt indicating that the system should

either respond with a follow-up message (e.g., to ask for more detail

or to warn the user that a requested change may not be possible

to implement), or with a patch to the previously-created linkage

or sensor. The prompt may include new builtin documentation, if

necessary.

When a chat message results in a change, the LLM is asked to

gauge whether the update would cause an incompatibility with

the existing linkage or sensor, both for any internally-stored data
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and (in the case of sensors) for the output payload type. Internal

incompatibilities are resolved by clearing the internal data state of

the linkage or sensor. If a sensor would need to change its output

payload type, the sensor is instead cloned for the new behavior.

4.2 Payload characteristics
In addition to the expected datatypes of output and input payloads,

we identified three payload characteristics that are domain-agnostic

and often relevant for constructed layers to include in their docu-

mentation. LLM-generated layers declare each of these character-

istics explicitly, and their generated documentation may provide

additional context in natural language when choices are not clear-

cut (e.g., when the retention of a message can differ depending on

the message). Here we discuss these characteristics primarily with

respect to generated sensors and their output payloads, but all three

also apply in reverse form to actuators’ input payloads.

4.2.1 Event timing. Sensors can provide either continuous data

(e.g., from a camera or other readout) or discrete data (e.g., from
button presses or received email messages). Further, discrete events

may signal one-off occurrences with a low duration of relevance

(e.g., when a button press is used to take an action, like advance the

slide in a slideshow), or they may be accompanied by data that is

relevant even after some time has passed, and therefore should be

retained for future use (e.g., when a radio button is used to choose

a mode that affects future computations). Ply asks generated layers

to choose which of these three options (‘stream’, ‘event’, or ‘event

with retention’) is most suited to describe how the layer’s payloads

should be used. Our choice to delineate explicitly between discrete

and continuous sensor data reflects a core takeaway from prior

work in sensor-based programming [26, 48].

This payload characteristic is exposed indirectly to the user in

sensor visualizations. On the main Ply canvas, sensors that use the

‘event’ or ‘event retained’ characteristic have their output data visu-

alized using discrete cards, each representing a separately-published

event. LLM-generated UI components that render these events are

contained to the area of the card. Sensors using the ‘stream’ char-

acteristic are visualized using a more freeform panel, rendering an

LLM-generated UI component that can choose exactly how to show

the latest stream information, which may update too quickly for

discrete cards to be practical.

4.2.2 Update mode. Sensors should identify whether their emitted

data represents a replacement of previously-emitted data or an

update of prior data. ‘Replace’ events tend to be appropriate for

absolute-value sensors, whether continuous or discrete. ‘Update’

events reflect deltas from previous events, e.g., representing just

the new text appended to a transcript.

Distinguishing between these two modes is important when pro-

cessing dependencies. For example, consider two sensors that use

some text as a dependency and emit an output payload containing

the summary of the input text. The first sensor uses a dependency

that emits the full contents of the current slide in a slideshow pre-

sentation, updating when the slide is changed. The second sensor

instead uses a dependency representing a running transcript of

a connected microphone, which may send a few words at a time,

splitting sentences across multiple event dispatches. The technique

used to summarize the dependency’s text will need to be different

between the first sensor (which handles ‘replace’-style events) and

the second sensor (which handles ‘update’-style events).

4.2.3 Staleness. Some sensorswill take time to process input events,

like when waiting for a response from a vision-language model to

interpret an input image. Such sensors will need to decide how to

handle inputs that come in while a previous event is processing.

A common pitfall is to allow asynchronous processing to resolve

out of order. Consider a sensor that receives “current slide text”

events from the user’s slideshow software and uses an LLM to

translate the current slide to a different language. If this code is

not authored carefully, a long translation request (combined with

a quick slide change) may result in a later slide being translated

before an earlier slide. When the earlier slide’s translation is ready,

the “translated slide” sensor would dispatch a new event, overriding

the later slide, which is likely to be undesirable.

Ply prompts the LLM performing layer generation to choose

an explicit strategy for handling stale requests. A few approaches

are viable, such as canceling outdated events, using a queue to

enforce exhaustive in-order execution, or simply allowing out-of-

order execution. By explicitly describing this issue and prompting

the LLM to articulate (in natural language) a strategy for handling

staleness in each layer’s processing code, Ply allows downstream

layer generation to take this behavior into account. In addition,

we noticed that including this instruction in the prompt generally

improved the system’s reliability in generating layers that handle

staleness in a way that is logical for the sensor.

4.3 External integrations
Ply coordinates communication with external services through

JSON-encoded MQTT messages published on topics unique to each

sensor and actuator. In our prototype, external integrations are all

configured using metadata hardcoded into Ply; there is no discovery

mechanism for new integrations to be added at runtime. These

integrations exchange messages with the MQTT server, and we

handwrote natural language documentation (stored in each sensor

and actuator’s metadata) describing what the integrations do and

the structure of event payloads that they dispatch or receive.

4.3.1 Existing ecosystem integrations. Because MQTT is a com-

mon protocol for communication between devices, we were able to

include a number of integrations without authoring new code.

We integrated an LED strip using the WLED firmware
2
, which

directly supports MQTT/JSON control, with only a natural lan-

guage description in the system of how API messages should be

formatted. Many integrations are available in the Zigbee2MQTT

project, a community-supported ecosystem of MQTT bindings for

smart home devices[30]; we integrated a Zigbee remote control,

toggleable smart outlet, and a Philips Hue color lightbulb.

We introduced integrations with software components using

a self-hosted instance of Nodemation [45], a low-code/no-code

software workflow automation platform; in particular, we used

Nodemation to create input and output bindings for Google Sheets,

Google Calendar, GMail, and Google Docs. Nodemation is a pro-

gramming system in its own right, but we created very simple

2
https://kno.wled.ge/interfaces/mqtt/

https://kno.wled.ge/interfaces/mqtt/
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Figure 6: A screenshot of the tablet interface we created for
integration with Ply. The interface includes a large output
panel, in this case showing a “slide coverage tracker”, and
software controls for sensor inputs.

two- or three-node graphs for use with Ply, binding MQTT publi-

cations/subscriptions directly to these underlying APIs by passing

data straight through the node graphs.

4.3.2 Additional integrations. We developed a real-time Google

Slides integration, implemented as a browser extension, that pro-

vides information to Ply about a presentation currently being pre-

sented. The integration also includes a “next slide” and a “previous

slide” actuator. While Nodemation is able to provide some control

over software, these API-based integrations tend to work at the

document management level (e.g., “Create a new slideshow”) rather

than in a way that could enable users to customize the interface

they use to control the software. Thus, our custom Slides integra-

tion allowed us to explore the creation of more interactive software

customizations through Ply.

To add some baseline software-based input controls and output

capability, we also developed an iPad integration, including four

sensors and one actuator (see Figure 6): software buttons; analog

sliders; microphone and camera feeds; and an actuator called “Dis-

play panel”, which is a large display area that accepts React code in

event payloads and renders it in-place.

Interfaces rendered in the display panel cannot directly dis-

patch events into Ply, although this UI may be locally interactive

through e.g., scrolling or collapsible sections. Interactive seemingly-

standalone “apps” can be created using the iPad integration’s sen-

sors and the display panel, routing actions through Ply’s backend.

4.3.3 Integrating flexibly. As Ply generates code, each prompt to

the language model includes the documentation of dependency

sensors and/or actuators. Although Ply depends on the presence

of integration code for each device or software component that

synchronizes state through JSON-encoded MQTT events, there are

no further restrictions on the precise format or timing of event pay-

loads. This is why we were able to use existing MQTT integrations

within Ply. For example, the Philips Hue light color is controlled

via hue and saturation values in the JSON object, while WLED

requires RGB values to be included in a nested sub-object; rather

than authoring shim code that presents the same standard interface

for both lights, we simply document each device’s preferred format

and allow the system to author the “last-mile” code that transforms

the data to the format consumed by the integration.

4.3.4 External integrations as a building block. Through flexibly-

defined integrations with other systems, Ply allows users to com-

bine composable workflow components with one another.

On the trigger side, for example, Ply can react to new messages

in an email inbox or rows added to a Google Sheets spreadsheet.

Thus, any data that can be received through an email notification or

a submission to a custom form can trigger behavior in Ply. Because

Ply can invoke AI models to process incoming language data, these

integrations need not be configured with a high degree of precision;

users can choose any reasonable form field structure or receive

emails in many different formats, and data can still be extracted

accurately.

On the action side, Ply has also been equipped with the ability to

write rows into a spreadsheet, closing an interoperability loop with

this end-user-programmable software. We also created a physical

integration with a small lockable box that we built using a micro-

controller and stepper motor, so that trigger-action programs can

lock and unlock the box. This illustrates that the target behavior

of a Ply program may itself be a means to some further goal, like

providing access to a physical key.

Therefore, Ply does not need to seize end-to-end control of a

workflow to offer value. Emails, spreadsheets, and lockboxes are

representative components that are already used in everyday life to

compose more complex workflows—whether to ingest information,

process data, or provide access to physical objects – and Ply can

help users “glue” these pieces together, even when those pieces do

not fit together natively.

4.4 Implementation choices
Our current version of Ply uses Anthropic’s Claude 3.7 Sonnet

language model, with 1200-3600 tokens of “thinking” budget for the

various task prompts, when various features are invoked (primarily

layer generation, visualization generation, and parameterization

component generation). Ply can also be configured to use OpenAI’s

o3-mini model, at medium and high reasoning levels, and has also

been tested with a distillation of the DeepSeek-R1 model (based on

the 70B Llama model).

Our initial prototype, built with o3-mini, takes around 30 sec-

onds to create a typical linkage or layer. The distilled R1 backend

offered much faster generation time (3-5 seconds), but responses of-

ten resulted in parsing errors. We ultimately used Claude 3.7 Sonnet

for our prototype, despite slower generation time (~45 seconds), be-

cause of its high-quality visualizations and rich parameterizations.

It may be possible to bring model performance into closer parity

through more precisely-tailored model-specific system prompts.

We generally tried to keep LLM prompts simple, preferring to avoid

prescribing behavior too narrowly in ways that could harm either

generalizability across domains or generalizability between under-

lying models (to ensure that Ply remains well-positioned to take

advantage of future developments in AI code generation capabil-

ity). LLM and text-to-image model calls from Ply are sent through

reagent, a server platform (introduced in [6]) that centralizes API

calls for different backing models.
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Figure 7: An input and output image for the “moody” version
of the AI digital camera created in Section 5.1. The program
created within Ply describes, dramatizes, then re-draws the
image.

5 Example programs
We offer example programs that we have successfully authored in

Ply, alongside details of howwe built up the programs. In describing

these programs here in the text, we have occasionally changed the

names of integrated and generated sensors/actuators for clarity.

The described prompts are exact, although we did occasionally

need to retry actions due to errors in responses (such as with the

iPad display actuator, which sometimes results in linkage code with

syntax errors in our prototype).

5.1 AI digital camera
Here, we create an “AI digital camera”, using a chain of sensor

layers to build toward a program that dramatizes and redraws

photographs, as in Figure 7.

Since the iPad streams a live feed of its camera, we first create a

sensor that allows us to take a photo by pressing a button:

Sensor Take a Photo

(layered on Camera Feed, iPad Buttons)
“when I press the X button, take a photo”

Then, we add a layer that describes what’s in the photo:

Sensor Photo Description

(layered on Take a Photo)
“describe what’s in the photo”

Now, we can dramatize the description and make a painting

based on the dramatization:

Sensor Photo Description Enhancer

(layered on Photo Description)
“make the description sound more dramatic, heroic”

Sensor Photo Description Painter

(layered on Description Enhancer)
“make a painting of this”

Linkage Photo Description Painter→ iPad display

(no prompt)

When the user presses the X button, a photo is taken, described,

dramatized, and re-painted onto the iPad display.

At each layer, the user can see the data in its transformed state.

For sensors whose payloads contain a lot of text, the text is often

cut off in the glanceable visualizations; the extended visualization

Figure 8: A rice cooker whose current state is identifiable
using a vision language model.

in the sensor’s detail view shows the complete description. After

creating the final linkage, this “camera” can be used outside of Ply.

The user can still make changes. Supposewewant the description

to become not heroic, but instead moody and brooding. In this case,

Ply generated parameters that allow us to configure the LLMprompt

used to improve the description, so there is no need to use the chat

interface to refine the behavior.

5.2 Rice cooker timer
Here, we use Ply to create a sensor layer representing the status of

a rice cooker (cooking, warming, or off – see Figure 8). Since this is

not a “smart” rice cooker, we affix a camera pointing at the front

of the rice cooker, then use AI image processing to interpret the

light-up interface.

Sensor Rice Cooker Status

(layered on Camera Feed)
“every 30 seconds, tell me if the rice cooker is: cooking, warm-
ing, or off. the left red light means cooking, right yellow light
means warm, if neither then it’s off.”

Once we have confirmed that the sensor correctly reads the rice

cooker’s status, we can layer on additional functionality:

Sensor Rice Cooker Timer

(layered on Rice Cooker Status)
“start a timer once the rice cooker starts cooking. reset the
timer and let me know when it changes to warming”

This sensor dispatches a new “time-elapsed” event every second

(configurable with parameters) while the timer is on, then a special

“finished” event when the timer switches to “warm”. We can keep

track of the status from our office:

Linkage Rice Cooker Timer→ Office light

“when it’s cooking, make the light yellow and get brighter over
the course of 25 minutes. once it finishes, change to green”

Through Ply, we improvise a sensor with equivalent function-

ality to a smart appliance, building a trigger-action program that

deals with higher-order information about the rice cooker’s status

even though the trigger is ultimately based on the camera feed.

5.3 Transaction tracking
In this example (also demonstrated in Figure 1), we create a program

that helps us track our spending. This workspace uses just one

linkage, using a sensor that represents a compilation of multiple

underlying transaction sensors and an actuator that takes multiple
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actions in response to a transaction. We assume the presence of a

“Take a Photo” sensor like the one created in Section 5.1.

Sensor Photo Receipt Reader

(layered on Take a Photo)
“if there’s a receipt, get the vendor and $$ amount”

Sensor Email Receipt Extractor

(layered on On Email Received)
“if i get a digital receipt, get the vendor and $$ amount”

Sensor Transaction Detector

(layered on Photo Receipt Reader, Email Receipt Extractor)
“detect transactions”

Actuator Add Budget Row to Spreadsheet

(layered on Insert Row into Spreadsheet)
“add budget row to spreadsheet with Vendor and Amount
columns”

Actuator LED Strip Progress Bar

(layered on WLED Strip)
“create an LED strip progress bar”

Actuator Transaction Tracker

(layered onAdd Budget Row to Spreadsheet, LED Strip Progress
Bar)
“Track my transactions”

Linkage Transaction Detector –> Transaction Tracker

(no prompt)

Although this program consists of only one trigger-action pair,

both sides of the linkage are rich with behavior, and the program

cleanly maps a complex trigger to a complex action using one core

linkage.

5.4 Slideshow progress
This program uses a microphone transcription during a slideshow

presentation to track how much of the current slide has been cov-

ered so far, providing both a visual guide to the presenter on the

iPad display (shown in Figure 6) and also an automatic slide ad-

vancement feature once the slide has been fully covered.

Sensor Slideshow Coverage

(layered on Transcribed Microphone, Text of Current Slide)
“track which parts of the slide I’ve said already”

Linkage Slideshow Coverage→ iPad display

“show me what I have and haven’t covered”

Linkage Slideshow Coverage→ Go to Next Slide

“go to the next slide when I finish this one”

The generated sensor (expanded in Figure 5) keeps a buffer of

transcribed speech that it resets when the slide changes. As gen-

erated, it splits slide text into segments and matches against the

transcript using basic string processing operations, with a config-

urable match threshold, although the sensor can also be modified

to use AI for more approximate semantic matching. In the sensor’s

glanceable visualization on the Ply canvas, users can see how much

of their slide has been covered. The full event payload is larger,

though, as revealed by the expanded visualization in the detail view.

Here, we use the created sensor in two distinct linkages, each

serving a different purpose. By reusing the sensor, we can ensure

that the slide change is using the same (customizable) coverage

tracking logic that is shown on the display.

5.5 Stateful lockbox
In this example, we illustrate a trigger-action program, authored in

Ply, that allows a box to be locked and unlocked. This program has

two modes: a “standard” mode which unlocks a box when the cam-

era sees an open hand gesture and locks the box when the camera

sees a closed fist, and a “locked-down” mode, activated through a

thumbs-down gesture, which transitions back into the “standard”

mode only when the user successfully enters a four-digit passcode.

The current mode is communicated through a colored light. This

program is stateful, including both the PIN entry state and the

current mode. Algorithm 1 offers pseudocode for this program.

Algorithm 1 Gesture and PIN-based Lock System

1: mode← standard
2: entered_pin← ‘’
3: function onGestureDetected(gesture)

4: if mode = standard then
5: if gesture = open-hand then
6: unlock box

7: else if gesture = closed-fist then
8: lock box

9: else if gesture = thumbs-down then
10: mode← locked-down
11: set light color to red

12: end if
13: end if
14: end function
15: function onNumericButtonPressed(button)

16: entered_pin← entered_pin + button
17: end function
18: function onCircleButtonPressed

19: if entered_pin = ‘1234’ then
20: mode← standard
21: set light color to green

22: else
23: entered_pin← ‘’
24: end if
25: end function

By decomposing this task into layers, the user can visualize the

program’s intermediate state within Ply, with each layer managing

its own slice of state. Here is how we constructed this program in

Ply:

Sensor Pin Detector

(layered on Buttons)
“When I type 1234 and hit O, unlock, otherwise O should clear
pin”
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Sensor Gesture Detector

(layered on Camera feed)
“Look for open hand, closed fist, or thumbs down”

Sensor Box Mode

(layered on Pin Detector, Gesture Detector)
“When I give a thumbs down, go into lockdown mode until I
type the right pin”

Sensor Box Unlock

(layered on Box Mode, Gesture Detector)
“Lock and unlock with a closed fist or open hand, but only if
box is not in lockdown mode”

Linkage Box Unlock→ Lockbox

(no prompt)

Linkage Box Mode→ Lightbulb (with color)

“red for lockdown mode, green otherwise”

Even this highly stateful program can be built easily in Ply, with

each linkage presenting a different portion of state to the user. In

this example, Ply provides a number of parameters, including the

ability to change the unlock PIN and also an option to flash the red

light during lockdown mode.

When we first generated this example in Ply, the program did

initially contain a bug: after correctly entering the PIN, the PIN

variable would not clear, and the subsequent entry would fail (thus

resetting correctly for the next entry). Because of the layer decom-

position and data visualizations, it was easy to see which layer con-

tained the bug (“Pin Detector”, which did not correctly unlock the

second time). When the buggy behavior is invoked, the glanceable

visualization also provided insight: by showing a number of bullet

points equal to the number of keys entered, the sensor showed that

its value had not reset. We fixed this bug by refining this sensor

with the chat message “it unlocks the first time but then the next one
fails before it works again”, which triggered a reasoning response

from the model (“Looking at my code: ... I see the problem! When the
PIN is correct and we unlock the system, we never clear the current
PIN!” ) that resulted in the correct repair.

5.6 Reusing layer components
In addition to supporting deep chains of logic (as in Section 5.1),

Ply’s reusable layers offer potential for “wide” computation graphs.

One Ply canvas can support an ecosystem of interoperating devices

using shared layer abstractions, for example in a single Ply-powered

smart home. We built these examples in Ply, demonstrating that

shared layers can be powerful ways to derive higher-level behavior

to be used in multiple places.

5.6.1 Hotword detector. On top of a “transcribed microphone” sen-

sor for a centrally-placed microphone, a hotword detection sensor
detects the words “Hey computer”, followed by a command; then,

many different devices (e.g., lights, outlets, electric window blinds)

can be controlled using this detector, and the hotword trigger be-

havior can be modified later for all devices at once.

5.6.2 Porch camera. A camera pointed outside the home’s front

door has two sensor layers built on top of it: one interprets local

weather conditions, and another periodically checks to see whether

a package is on the doorstep. These sensors offer different informa-

tion, higher-level than the raw camera feed each is based on, to be

used in further automations. For example, the weather sensor ad-

justs the brightness of interior lights to compensate for dull weather,

while the package detector sends a notification to the homeowner

when a new package arrives. Later, the sensors are recombined,

notifying the next-door neighbors to ask for help when a package

is at risk of being stuck out in the rain.

5.6.3 Ambient alerts. An actuator layer coordinates multiple data

sources through a lightbulb in the user’s study, providing passive

status information about the home. The actuator pools incoming

alert data; when no relevant information is available, the bulb de-

faults to a warm, soft light. As the actuator collects data requiring

the user’s attention (e.g., incoming emails or a package on the

doorstep), the bulb increases in intensity, slowly turning to a cooler

color and eventually blinking until the user notices and clears these

alerts. More critical data sources (e.g., an email deemed to be urgent)

can publish events to the actuator that quickly elevate the actuator’s

alert status, and new data sources can be added by linking them to

the existing alert system.

These three examples coexist in one Ply project representing the

smart home, and interconnections between these abstractions can

be built just as if they were low-level primitive components.

6 User study
We conducted a first-use study with seven participants to observe

how they construct trigger-action programs with Ply.

6.1 Study design
We recruited participants for an in-person two-hour lab study from

university mailing lists for various disciplines. All participants were

18-22 years old (four male and three female, self-reported in a

freeform field), and all reported some programming experience.

Participants were compensated $40 for their participation.

6.1.1 Training session. We began each visit with a training ses-

sion, consuming around one hour. We directed participants to walk

through a set of basic tasks involving constructing sensor layers

and connecting them to actuators through linkages, using various

external integrations. Participants made sensor layers with multi-

ple dependencies. They also modified sensors and linkages, both

through parameters and through chat refinement. The “AI digital

camera” described in Section 5.1 reflects one chain of sensors that

participants created during the training session. As described ear-

lier, we did not emphasize the actuator abstraction feature during

the study, and no participant used this feature. To help participants

understand the programming model, the training session included

a usage example that involves Ply choosing a random color when

a button is pressed, to be used in multiple actions. This requires a
layered sensor to be created; we demonstrated that simply creat-

ing a direct sensor-actuator linkage without an intermediate layer

would result in the linkage containing hidden state that could not

be used by another linkage’s execution.



Generative Trigger-Action Programming with Ply UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea

6.1.2 Study tasks. Participants were then presented with a fresh

workspace and asked to complete four tasks. We allowed partici-

pants to take their timewith the tasks in order, but in some cases, we

asked participants to move onto the next task without completing

a prior task, to ensure timely completion.

6.1.3 Task: Pokémon card database. In the first task, participants

used the iPad camera to create a digital record of a deck of Pokémon

cards, e.g., by processing photographs and inserting records into a

spreadsheet. This is similar to the example described in Section 5.3,

although it is smaller in scope.

We also revealed a second portion of the task, in which the total

accumulated HP (hitpoints) values of the photographed Pokémon

cards would control the brightness of a lamp. This subtask is best

completed through reusing a sensor layer, but can also be completed

by re-creating the data extraction logic.

6.1.4 Task: Slang translator. Then, participants were asked to use

the Transcribed Microphone sensor (which is a sensor we pre-loaded

into the workspace, built on top of the raw microphone feed using

the transcription builtin) to detect slang in speech, and to use the

iPad display to provide assistance to a hypothetical person in the

room who might have trouble understanding the slang (e.g., by
showing definitions or an altered transcript).

As a second portion of the task, we again asked participants

to control the brightness of a lamp, this time based on the total

amount of slang used in the conversation.

6.1.5 Task: Slide clicker. Participants were then asked to build a

workspace that allows users to use both buttons and voice control

to move forward and backward in a slide presentation, and also to

use a document or spreadsheet to keep track of when the current

slide changes.

6.1.6 Task: Lockbox. Finally, participants were asked to use at least
two distinct sensors to build some kind of puzzle or challenge that

could be used as the condition to unlock a physical lockbox.

6.2 Results
Participants were generally successful in completing the provided

tasks, and found the tasks enjoyable; on a five-point Likert scale,

five participants agreed and two strongly agreed with the statement

“I enjoyed using [Ply]”.

Not all participants made ready use of sensor layering during

their one-hour task completion period. One of seven participants

chose to complete tasks only using linkages between base-level

sensors and actuators, which often resulted in duplicated logic

between linkages (e.g., to determine the HP value of a Pokémon

card in the first task). When users are not comfortable decomposing

their programs into smaller component layers, Ply can still provide

value through natural language specification and refinement of

trigger-action programs and through the parameterization interface

(both of which were used by the participant who did not create

new layers).

All but one of the participants who did make sensor layers reused
these layers at least once, breaking up their computations into indi-

vidual components that could be tweaked and verified individually.

Participants were not wholly effective at decomposing their code

into reusable layers. In the slide clicker task, for example, only P6 at-

tempted to combine voice-based and button-based actions into one

slide-change sensor layer, and they ultimately still made separate

voice- and button-based linkages when their first attempt didn’t

work. P3 explicitly called out feeling that their program structure

wasn’t ideal in the slide clicker task: “I feel like there’s definitely a
way I could be doing this. I feel like I’m being super redundant by
making, like, separate ones.” When programs were decomposed well,

however, the sensor visualizations and parameterizations proved

helpful.

6.2.1 Using sensor visualizations. Sensor visualizations served mul-

tiple purposes during task completions. A common use was to

verify a sensor’s behavior before linking it; for example, all five

participants who created a specific “Pokémon card detector” layer

abstraction took a photo and checked the layer’s output before

building on top of it with another layer or linkage.

Even after linking a sensor to an actuator, however, sensor visu-

alizations proved to be a useful way to see the intermediate state of

a program and to see what information was available to the linkage.

For example, P1 discovered an issue with their Pokémon card de-

tector (which would not detect a card if multiple were present) just

through a distinct “No card detected” sensor visualization, before

needing to check explicitly whether rows were being added to the

target spreadsheet.

Visualizations were even useful in verifying end-to-end behavior.

While building their slide clicker, P3 used the built-in “Current slide

number” sensor and its associated visualization to verify that the

slide was being advanced correctly in response to their actions,

rather than checking the slideshow manually. By providing real-

time feedback about the status of integrated elements, Ply supports

end-to-end visibility of executions in the same medium as visibil-

ity of internal state, combating “information” and “understanding”

learning barriers (as in [34]) together.

6.2.2 Dealing with errors. Errors in Ply can emerge either when

generated code does not run correctly within the system (generally

causing an explicit “Error” response in the UI) or when code does

not behave as a user requested or intended. For example: in the

“AI camera” task of the training session, which all participants

completed identically, there were 3 instances of non-parsing code

and 5 instances of layers behaving differently than users intended

(and needing refinement or recreation), of 48 total sensor/linkage

creations.

When code behaves in unexpected ways, users can detect these

problems either through unexpected visual outputs from layers or

through unexpected end-to-end behavior. Because Ply encourages

users to deconstruct programs into layers, users can find and fix

errors in one layer while locking existing working functionality.

In self-guided tasks, discovering and correcting errors was more

freeform (and some errors went uncorrected), because users were

free to choose how they ultimately completed the task. In the Poké-

mon task, for example, six errors were detected through layer vi-

sualizations, and of the five that were corrected by the user, three

were corrected by recreating sensors from scratch and two through

chat refinement.



UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea Aveni et al.

6.2.3 Parameterization as documentation. Although parameteri-

zations were largely designed to provide control over synthesized
code, we sometimes observed that these configuration UIs helped

users understand how some generated code worked or what it did,

even before tweaking the parameters. For example, seeing a polling
interval parameter on a sensor that detects an object in a camera

feed served as an indication that the sensor was periodically check-

ing the feed, rather than reacting to changes in the feed. Giving

operable controls may help to overcome the information overload

presented in text-only chat responses.

7 Discussion
Ply’s core features offer visibility over and control into the structure

of trigger-action programs. We compile insights from our worked

examples, our user study, and personal usage experience.

7.1 Trade-offs
Ply’s programming model is not as expressive as that of general,

unstructured code. Here, we discuss some conceptual limitations

and how they trade off against desirable characteristics of Ply.

7.1.1 State-heavy programs. Programs that cannot be framed as

trigger-action pairs may not be well-suited to being built in Ply. For

example, consider a “snake” game which accepts directional button

inputs and uses a visual display to show the current status of the

game. It is unclear how a user of Ply should compose sensors in

a way that meaningfully breaks down this complex program. Ply

can implement such a game in a one-shot linkage prompt, directly

mapping a non-layered “buttons” sensor to a non-layered “output

display” sensor. The result is a game with state stored internally in

the runtime data of the linkage, which cannot be inspected using

Ply’s multi-layer interface; this interaction essentially reduces to a

simpler chatbot-driven code synthesis tool.

Long-term state, computed and then stored for later executions,

may also be awkward to include in a trigger-action program, since

it is not possible to “loop” back to the start of the execution graph

using information computed later in the program’s execution. One

solution is to route persistent information through the real world,

e.g., by using an actuator to add information to a spreadsheet, then

using a sensor to re-ingest that information from the same sheet.

This is reminiscent of software engineering architecture techniques

that insist on unidirectional dataflow until new executions are trig-

gered from sources external to the data processing code (e.g., [49]).
This requirement for looping programs to exit and re-enter Ply

may even be desirable, since it encourages users to author programs

that store their state in the real world. This can improve visibility
into the state of long-term workflows even when Ply is not in active

use, which can support coordination external to the software [33].

Using the external environment to store and retrieve state can

also improve applications’ compatibility with other workflows. For

example, consider two programs to toggle the state of a smart outlet

that receives “on” or “off” event payloads. The first program links a

button directly to the outlet; this program stores a state value for

the outlet within the linkage, and a button press flips this state and

sends an “on” or “off” event to the outlet. The second program uses

a button and a sensor that pulls in the current state of the outlet
on the trigger side; the button press dispatches a payload that flips

the outlet to the opposite state. Because the second program uses

the up-to-date outlet state instead of an internal state variable, it is

resilient to the state being changed from outside of Ply, for example

by a physical button on the outlet.

7.1.2 Coupling data and behavior. Linkages and sensor/actuator

layers in Ply are not polymorphic; their code is written ad hoc to
use exactly the available dependencies. By synthesizing code on the

spot to join together concrete implementations, Ply frees users from

needing to think about abstract interfaces between components of

their programs. As long as some data is visible in an event payload,

it can be used in a subsequent higher-level layer.

This makes authoring data transformations very straightforward.

When building up programs based on existing sensors, the user

prompts Ply in terms of the data already available from the un-

derlying sensor implementation, relying on the LLM backend to

interpret the prompt in context with dependencies’ payload types

and sensors’ example payloads.

This approach also frees integrated tools to dispatch or receive

payloads in any format they choose, as long as the format is doc-

umented in natural language. Approaches that require tools to

comply with standard interchange formats can require heavy work

on the part of the developer to meet these standards, and they also

discourage tools from introducing unique affordances that would

not be supported by compatibility layers. Ply, on the other hand,

can support any documented behavior of an integration. Because it

generates interoperability code on the fly, it does not discriminate

between standard and nonstandard devices.

The drawback to this approach is that dependencies cannot eas-

ily be replaced or modified after they have been integrated into a

program; replacing a dependency would require nontrivial logic

to handle potential conflicts or incompatibilities, which could cas-

cade through a program’s code. Ply’s visualizations help to allay

this downside by empowering users to test sensor layer compo-

nents before committing to building upon them, and generated

parameterizations can also help layer code remain flexible.

7.1.3 Locality. Programs authored in Ply are split across abstrac-

tion layers, and downstream uses of a layer are reliant on that layer’s

documentation (not its code implementation) to ensure correct use.

AI features of Ply are not able to cross these boundaries and modify

multiple layers’ code at once; this choice permits users to create,

test, and then “freeze” components in place. Sensor layers, then,

serve as checkpoints for program behavior that can be reused later.

This is in contrast to tools that directly generate and update large

blocks of text-based code, which may make unexpected changes to

aspects of full programs that the user did not want to modify.

However, this locality can be limiting, where broadly-scoped

context would help the AI provide non-obvious recommendations

to the user. For example, the staleness behavior discussed in Section

4.2.3 can be handled in different ways, depending on the context.

Take the example of a sensor that translates the text on the current

slide of a presentation. If the presenter skips through many slides

too quickly for translations to be created, should the sensor discard

stale translations, or should they be queued so that all translations

are eventually provided by the sensor? This will depend on the

application’s downstream use of translations, but Ply will make

a choice about this layer’s staleness properties before the final
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trigger-action program is written; users can request a change to

this behavior, but only if they understand that the AI has made a

decision on their behalf.

7.2 Composing programs with layers
Ply allows boundaries between software components to be specified

in approximate terms, using natural language instead of specific

data types to describe the data provided by a sensor layer. This can

simplify the process of decomposing a program into components.

However, participants in our user study used programs with many

redundant linkages instead of building minimal decompositions.

Ply flexibly supports both workflows that engage in much de-

composition and those engaging in little decomposition, and many

participants used different approaches in different tasks. Still, Ply

could be improved in the future to provide more support in creating

and informing the user about program decompositions. Because

the visualization and parameterization tools offered by Ply are most

effective when layer abstractions are created, Ply’s interactions

should encourage and support decomposition-heavy workflows.

7.3 Code generation for a messy environment
Through using Ply, we sometimes noticed characteristics of some

generated code that, although we did not prompt for them, we

believe to be valuable.

7.3.1 Defensive programming. Generated code was often defensive,
checking input payloads carefully (e.g., to prevent null dereferenc-

ing) even when the datatype was specified by the documentation

from dependencies. This can help reduce the impact of a miscom-

munication or a mistake from an underlying dependency, providing

some reasonable default even when dependencies do not adhere

to their self-stated contracts. There is no runtime type checking in

Ply, so it is important for components to be able to fail gracefully if

unexpected inputs are received. Even layers’ internal state data can

be made obsolete by user updates to parameters (e.g., causing a list

index to go out of range), but we did not find this to cause frequent

breakages in defensively-written code.

7.3.2 Information passthrough. When we switched Ply’s primary

LLM from o3-mini to Claude 3.7 Sonnet, Claude was more likely

to include not just the requested output data, but also a copy of

the input data that was used to process the output. For example, in

the “slang detector” task from our user study, a sensor that detects

and translates slang may also include the entire original text from

which slang is being extracted.

This additional context can be helpful in a few ways. The sen-

sor’s output visualization can include this information, in this case

highlighting where slang appeared in the original text. In addition,

a downstream sensor may use this context to, e.g., improve the

quality of a translation. If a sensor needs to be changed, having

additional data from dependency sensors improves the chances

that the right information is available to implement the updated

behavior without having to first update the dependency explicitly.

Because sensors are built incrementally, it is not always clear in

advance which information may be needed in the future. Including

more information can help deal with this uncertainty.

This behavior does begin to violate the abstraction suggested

by Ply’s core layering technique, which may cause unexpected

behavior. However, each new layer is a chance for Ply to determine

which prior information remains relevant and to recontextualize the

data with respect to the new layer (for example, calling an output

value “pre-translation text” instead of “text from microphone”).

7.4 Conclusion and future work
We present Ply, a system that supports trigger-action programming

through code generation. By offering users tools to decompose,
visualize, and parameterize their programs, we offer finer under-

standing and control of the programs built with LLM assistance.

We discuss five example programs and report on a user study to

describe how users engage with this new programming technique.

Because Ply can author code on the fly to meet users’ demands,

it can integrate much more flexibly with external tools than tradi-

tional trigger-action programming systems can. We believe that Ply

and future systems of this nature are valuable for more than just

automating or speeding up workflows. These systems can improve

accessibility through interface customizability, including through

physical, real-time control of software. Users can explore novel

creative uses of their software tools through new, custom-built

interactions. These custom tools could allow users to set their own

stage for computer-supported expressive performances, beyond in-

tegrations just with slideshow presentation software.

Future work could expand Ply to new domains, focusing, for

example, on programs that continuously map inputs to outputs or

on programs that require more explicit long-term state manage-

ment. Other improvements could give users more visibility into

how programs work. For example, Ply could show the state in-
side generated layers, rather than just at the boundaries of system

components. Future work could also lean into the communicative

power of parameterizations as a means of outlining a component’s

functionality beyond long chat-response descriptions, for example

by requiring users to choose some parameters (instead of providing

defaults) as a way to induce reflection in users about how generated

components work.

Although layer decomposition was central to Ply, not all partici-

pants made full use of this decomposition strategy to author more

complex programs. Future work should investigate the question:

could improved usability or a longer-term deployment of Ply elicit

more of this type of use, or does decomposition remain a difficult

task in building programs regardless? Our Ply-only evaluation stops

short of comparing the usability of Ply’s decomposition approach

to that of other tools, and a comparative evaluation could offer

valuable insight into the design of future programming systems.

To improve Ply’s generalizability, later work could tackle the

complex interactions that would enable users to swap dependencies

after building programs without sacrificing the benefits provided by

concrete, grounded code synthesis. We even see potential for Ply’s

techniques in impacting practice beyond trigger-action program-

ming, through building similar visualization and parameterization

tools for other paradigms (like node-based or even text-based pro-

gramming).
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