
Supporting Students in Prototyping AI-backed Software with
Hosted Prompt Template APIs

Timothy J. Aveni
tja@berkeley.edu

University of California, Berkeley
Berkeley, CA, USA

James Smith
james.smith@berkeley.edu

University of California, Berkeley
Berkeley, CA, USA

Armando Fox
fox@berkeley.edu

University of California, Berkeley
Berkeley, CA, USA

Björn Hartmann
bjoern@eecs.berkeley.edu

University of California, Berkeley
Berkeley, CA, USA

Abstract

Large AI models, such as LLMs and text-to-image models, can be
used to power intelligent components of software applications. In
our User Interface Design and Development course, we encour-
age students to practice integrating AI-powered capabilities into
their software prototypes. To facilitate this practice, we developed
reagent, an open source Web platform that facilitates student ex-
ploration through iterative authorship of prompt templates, then
hosts AI model APIs for those templates with billing configured by
instructors. After an introductory homework assignment, students
were encouraged to invent their own AI features in an open-ended
final team project. Students widely reported that their experiences
with AI in this course were valuable, offering a deeper understand-
ing of the capabilities and limitations of using AI in software. By
supporting authorship, facilitating integration, providing visibil-
ity, and reducing administrative hurdles, reagent facilitated both
student exploration and instructors’ involvement. Additionally, we
offer insight we gleaned as instructors into how students form
conceptual models about AI.

CCS Concepts

• Human-centered computing → User interface program-

ming; Natural language interfaces; Field studies; • Social and
professional topics→ Software engineering education.

Keywords

generative AI, course technology, prototyping, large language mod-
els, text-to-image models, prompt engineering

ACM Reference Format:

Timothy J. Aveni, James Smith, Armando Fox, and Björn Hartmann. 2025.
Supporting Students in PrototypingAI-backed SoftwarewithHosted Prompt
Template APIs. In Proceedings of the 30th ACM Conference on Innovation
and Technology in Computer Science Education V. 1 (ITiCSE 2025), June 27-
July 2, 2025, Nijmegen, Netherlands. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3724363.3729109

This work is licensed under a Creative Commons Attribution 4.0 International License.
ITiCSE 2025, June 27-July 2, 2025, Nijmegen, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1567-9/2025/06
https://doi.org/10.1145/3724363.3729109

1 Introduction

Generative AI models, like large language models (LLMs) and text-
to-image (TTI) models, have a breadth of uses. Although many
users’ interactions with these models happen in the context of a
direct chat interface (e.g., ChatGPT), these models can also be used
to power intelligent components of software applications, especially
when used alongside prompt templates. Prompt templates (as seen
in novel UIs that incorporate features powered by generative AI,
e.g., [17], [10], [22]) contain instructions for a particular task, inter-
spersed with locations where data available during a program’s use
can be inserted so that an AI model can respond to user behavior.

Such interfaces combine traditional methods of software engi-
neering with calls to prompt-based AI models. This component-
based approach toward generative AI application features, com-
pared to straightforward chatbot implementations, can enable de-
velopers to build features that are more powerful (as in [19], which
orchestrates AI behaviors using a framework external to the AI)
and more contextually-appropriate (as in [7], which guides an LLM
to produce actionable outputs within design software). Such archi-
tectures are additionally important because they enable software
designers to place guardrails that preclude undesired behaviors that
could arise in open-ended applications (giving away an assignment
solution [14] or obviating a puzzle [9]).

It is important to expose students to this newway of constructing
interactive software, enabling them to explore capabilities and limi-
tations to become thoughtful designers of future AI-powered soft-
ware. Constructing, testing, and integrating prompt templates into
software presents technical and logistical difficulties to students,
however. We integrated AI-powered applications into a project-
based UI design and development course, and built a software plat-
form, reagent, to support the following goals:

• Support collaborative, iterative authorship and testing of
prompt templates to be used in software prototypes

• Facilitate transition from exploration to integration, mini-
mizing technical complexity

• Provide visibility of classwork to instructors
• Reduce administrative hurdles for course-scale deployment

We deployed reagent in our course and analyze students’ work,
revealing both opportunities and risks in engaging students in
building AI-powered software.

https://orcid.org/0000-0002-6549-5249
https://orcid.org/0000-0002-4581-6164
https://orcid.org/0000-0002-6096-4931
https://orcid.org/0000-0002-0693-0829
https://doi.org/10.1145/3724363.3729109
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3724363.3729109

ITiCSE 2025, June 27-July 2, 2025, Nijmegen, Netherlands Timothy J. Aveni, James Smith, Björn Hartmann, and Armando Fox

Student

Student's
applica�on

API
keys

Instructor

Noggin

prompt
template logging

3rd-party
prompt-based

models

student
teams

budget

reagent

Web UI

API
Feature

I am a [level] speaker of [language] ...
Translate [phrase] to [language].

Template

Sample invoca�on

$level

$level

$phrase $language

$language

$language

$phrase
beginner Dutch Is this the tram stop?

Figure 1: Noggins created within reagent can be configured

by students, then used within application code to make re-

quests to third-party promptable AI models.

2 Related Work

CS educators are currently grappling with impacts of AI on cur-
riculum in a number of ways. There is much recent work exploring
students’ experiences using commercial generative AI products,
such as ChatGPT and GitHub Copilot [5]. For example, students
use LLMs to assist with code debugging [13] or in authoring code
or assignment solutions [11, 13]. The research community has also
investigated the development of custom tooling designed to help
teach computer science material in pedagogically effective ways,
or to scale teaching resources [14, 23].

In contrast, other work has focused on teaching students how
to introduce intelligent features to their own software through
traditional machine learning approaches (training, testing, and de-
ploying a model) [6, 12]. Prompt-based models provide for an even
lower barrier to entry for software integration, offering description-
based invocation of a wide range of model capabilities [4, 15, 18].

Our perspective focuses on helping students understand how to
integrate generative AI functionality into open-ended software de-
sign projects. This motivation connects to other research that aims
to use generative AI as a design material (e.g., [20, 21]), allowing
designers to prototype UI behavior with little technical skill. We
focus on CS students with a design task that requires implementing
functional software that mediates both intelligent UI features and
traditional user interactions through code.

3 Course Context

We teach a User Interface Design and Development course targeted
at juniors and seniors within the CS program at a US-based research
university. In the course, students learn about principles of HCI
and UI design, then put those principles into practice in homework
assignments and a final open-ended team project.

4 reagent

We identified an opportunity to facilitate students’ exploration
of AI through the development of a course technology platform.
reagent is a hosted, open source Web tool1 that offers students a
1https://acelab.berkeley.edu/projects/reagent

rich, collaborative authoring interface for prompt-based AI models,
then automatically stands up a “batteries-included” API gateway
that can be used from any code.

4.1 Design goals

Our goals in designing reagent were inspired by our prior expe-
rience as instructors, both of this course and of other design and
programming courses.

4.1.1 Support collaborative, iterative authorship and testing. Direct-
ing LLMs and TTI models to perform particular tasks is possible
through just natural language. We wanted to create an environment
for students to experiment with authoring prompts and evaluating
model output in advance of writing code. The eventual goal of inte-
grating prompts into software requires a skillset beyond writing
one-off prompts, however: students need to author reusable prompt
templates that operate on diverse inputs at program runtime. Thus,
we designed reagent to empower students to test their prompts
on varying inputs, refine their templates iteratively, and engineer
prompts collaboratively with peers and instructors.

4.1.2 Facilitate transition from exploration to integration. As in-
structors, we have observed that even simple (non-AI) APIs typically
require some technical skill to set up and use, requiring that stu-
dents configure and manage API keys, understand documentation,
and format inputs and outputs to “glue” the API into student code.
These are valuable skills to teach CS students but are often inci-
dental to an assignment’s learning objectives and can consume an
inordinate amount of students’ debugging time. We sought to build
an approachable ecosystem that could support courses targeted
even at novice programmers, e.g., hardware design and prototyping
courses in which students typically write only “glue” code.

Prompt templates created within the reagent UI, therefore, are
immediately available in a simple-to-use API whose invocations
are visible in the same place and form as manual runs. To overcome
information barriers (as in [16]), students need to feel empowered
to inspect their programs. When something goes wrong in an in-
telligent software feature, the application boundary between the
student’s code and the AI model is a valuable starting point for
debugging: did the correct data make it into the prompt from the
software? Did the AI respond sensibly, and in a format the student’s
code can use? We designed reagent to provide visibility into con-
structed prompt inputs and AI outputs for all API calls, supporting
students in debugging their code.

Prompt-based AI models, given their flexibility and ease of use,
are a unique target for an “out of order” approach; we believe that
students are ready to experiment with including intelligent features
in their applications even before learning to interface with an API.
Additionally, even when large AI models are not strictly necessary
to carry out a task (e.g., sentiment analysis), prompt-based models
can enable fast, low-commitment prototyping with AI features.

4.1.3 Provide visibility to instructors. Because prompts are located
in reagent rather than in student code, it is important for instruc-
tors to be able to see and potentially make edits to prompts, e.g.,
when grading or when demonstrating ideas. Introducing a software
architecture boundary at the prompt template level enables instruc-
tors to inspect prompts in isolation, supporting instruction related

https://acelab.berkeley.edu/projects/reagent

Supporting Students in Prototyping AI-backed Software with Hosted Prompt Template APIs ITiCSE 2025, June 27-July 2, 2025, Nijmegen, Netherlands

Figure 2: Screenshots of various components of reagent’s UI. A: rich prompt editing interface; B: budget management; C:

output structure editor; D: a form with a field for each variable; E: a code snippet that invokes the noggin; F: run history of this

noggin; G: a run visualized in “chat” style.

to prompt engineering, which has its own pedagogical consider-
ations separate from student-authored code. Instructors can also
leverage usage history, rather than just students’ final prompts, to
better understand how students are forming conceptual models of
generative AI, which we demonstrate in Sections 6 and 7.

4.1.4 Reduce administrative hurdles. Running LLMs and TTI mod-
els requires large amounts of compute power, typically offloaded
using an API to a cloud machine. We centralize billing for all course-
related use so that we could pay for students’ experimentation with-
out each student needing to configure payment details, whichwould
pose a logistical barrier as well as a financial one. With reagent,
instructors can manage budgets both for individual students and for
teams. Additionally, building a backend-agnostic system enables
rapid switching between models, reducing the friction of experi-
mentation. With centralized billing, students can use any model
regardless of its backend and how it is paid for.

4.2 Noggins: Creating Single-Purpose Tools

within reagent

4.2.1 Authoring APIs. After logging in with a GitHub account, stu-
dents are able to create a new noggin, a single-purpose tool backed
by a chosen AI model (from the supported backends OpenAI [2],
Anthropic [3], and Replicate [1]), alongside a stored prompt tem-
plate and model configuration. reagent supports both text and
image output.

Noggins’ prompt templates are authored using a rich prompt
editor that supports chat turns (for use with “chat”-style LLMs) and
typed template variable placeholders (Figure 2, A). When author-
ing a prompt template, students implicitly construct an API input
interface through the insertion of text or image variables into their
prompt. For models that support output structure specification,
reagent provides a visual editor to customize the output format
of the noggin (Figure 2, C).

4.2.2 Using your Noggin. Students can experiment with their nog-
gin’s API in reagent’s “Use” pane (Figure 2, D). Students can specify
each noggin’s budget (specified in US cents) individually, subject to
a global instructor-chosen maximum over all of their budgets; runs
that would go over-budget are canceled. Responses are streamed
to a view that also shows exactly the prompt as it was sent to the

model (Figure 2, G). Students are provided with pre-filled code
snippets that can be used to invoke the noggin, either through a
direct URL or a POST request in code (Figure 2, E). The noggin’s
API inputs match the variables from the prompt editor, effectively
creating an API that abstracts away the underlying AI model and
instead presents a single-purpose tool.

Some API features were designed to mitigate risks from API
keys being leaked by students, e.g., to public GitHub repositories:
each noggin’s API key can be used only for that particular noggin,
inputs are truncated to prevent overly costly request parameters,
and noggin budgets are capped by default so that even leaked
keys cannot overspend. We did experience a student reporting the
accidental leakage of a reagentAPI key on a public code repository,
and we reassured the student that no harm was done.

The API backing each noggin is designed to be robust, searching
for API keys and variable inputs wherever they may be present in
the request (in URL parameters as well as in URL- or JSON-encoded
POST data) and accepting images in various formats (data URLs,
inferring image types through their payload data when the MIME
prefix is missing, or external URLs fetched by the API server). Fea-
tures such as this added API robustness and the API’s pre-emptive
run cost prediction are designed to offer guardrails and assistance,
especially for students without much experience using APIs.

reagent shows students every run of the noggin, including those
made through the API. This provides a default logging baseline that
can help debug and attribute errors, showing exactly what was sent
to and received from the AI.

4.2.3 Collaboration. Students are added by their instructors to an
“organization” within reagent, which centralizes API billing by
routing noggin requests through an instructor-specified API key.
Course staff can choose howmuch total budget should be permitted
across all of a member’s noggins.

Instructors can form student teams with their own budget limits
separate from individual budget limits. Team noggins are shared
and editable by all team members. reagent’s rich prompt editor
supports live collaboration (in the style of Google Docs), allowing
for multiple students or instructors to edit prompts concurrently
during the design and debugging processes.

ITiCSE 2025, June 27-July 2, 2025, Nijmegen, Netherlands Timothy J. Aveni, James Smith, Björn Hartmann, and Armando Fox

Figure 3: Left: A noggin is invoked fromwithinGoogle Sheets.

Right: A different noggin is invoked within a Snap! program,

with its output used to alter control flow.

4.2.4 Interoperability. Because reagent exposes each noggin as a
simple HTTP API, noggins can be used portably even in environ-
ments where it is inconvenient to craft complex HTTP requests.
For example, Figure 3 demonstrates noggins being invoked within
Google Sheets and the block-based programming language Snap!
[8] with just an HTTP GET request, using reagent to “program”
the behavior of the AI backend. Since the API is configured interac-
tively within the reagent UI, the actual invocation of the noggin is
simple enough for almost any programming-enabled environment.

5 Programming Assignment

We developed an assignment to introduce students both to reagent
and to using AI models within code. In four tasks, students cus-
tomize the behavior of AI models to fit into existing software, using
AI to create text and image processing tools that improve UIs. The
assignment serves as a sandbox where students can experiment and
begin to learn the considerations, potential, and shortcomings of
using AI components within software. Most students found this to
be an easy assignment; although there is iterative work in prompt-
ing the AI to produce useful responses, this is forgiving compared
to typical programming (there are no syntax errors in a prompt!).

Students were provided with starter UI code for each task, each
containing basic functionality but no intelligent features. Students
implemented intelligent features into UIs including text summa-
rization, a recommendation system, an image generator, and a tool
that extracts form data from a photograph (This programming as-
signment is available as supplementary material2).

The assignment introduces the flexibility of pre-trained models
(e.g., the model’s ability to understand non-English text despite
being prompted in English), the use of model output beyond dis-
playing it to users (e.g., to take UI actions), the use of visual inputs
and outputs, and the potential for task failure and UI design impli-
cations. The assignment steers away from uses of AI that may have
difficult-to-notice flaws (e.g., tasks especially prone to hallucina-
tion); we use more focused instruction during class time to address
limitations and ethical issues surrounding AI use. Students write a
reflection on UI design needs specific to AI and on potential down-
sides of building intelligent features in this way. After completing
the assignment, students begin to design and integrate AI features
into their final team projects. In these open-ended projects, students
implement working prototypes of software they have designed to
target the discovered needs of a chosen user group.

2https://acelab.berkeley.edu/projects/speedy-smarts/

Figure 4: (a): Survey responses from before students begin

their first AI-related assignment and exposure to reagent.

(b): The same questions, asked at the end of the course.

(c): Post-survey of student perception of how much their

understanding comes from reagent use. (d): Post-survey of

student perception of how much reagent assisted in tasks

related to the integration of AI in software.

6 Observations

After a successful pilot deployment in spring 2024, we conducted
an IRB-approved research study in our summer 2024 semester,
collecting data about reagent use. All students were permitted to
use reagent for their work, and course staff members were not
informed of the identities of consenting students until after final
grades were submitted. Of 69 students who completed the course,
39 consented to the use of their responses and work in this research.
We surveyed students before their initial introduction to reagent
and at the end of the course; 38 participants responded to this initial
survey, and 35 of those additionally responded to the final survey.
We also collected usage history from reagent’s database detailing
participants’ use of reagent in their coursework.

6.1 Building and Exploring with reagent

Students made heavy use of reagent, both in individual homework
and their open-ended final project. Students reported an increased
understanding of how to integrate large AI models into their work.
Before the introduction of reagent, only 3 of 38 respondents agreed
or strongly agreed with the statement “I know how to implement AI
integrations in software”; at the end of the semester, this grew to 28
of 35 respondents. Because we provided in-class instruction on AI

https://acelab.berkeley.edu/projects/speedy-smarts/

Supporting Students in Prototyping AI-backed Software with Hosted Prompt Template APIs ITiCSE 2025, June 27-July 2, 2025, Nijmegen, Netherlands

in addition to having students experiment using reagent, we also
asked students at the end of the semester where their understanding
of various topics came from (see Figure 4c); these responses skewed
heavily toward reagent offering significant benefits. reagent
assisted with many tasks in the integration of AI into software,
shown in the responses in Figure 4d (participants who selected
“N/A” are excluded from each bar).

Students were generally very positive in their evaluation of
reagent and its impact on their process. Some benefit of using
reagent came from its convenience for experimenting with large
AI models’ capabilities before integrating into code; 31 participants
reported that reagent helped with or was instrumental in experi-
menting with prompts (Figure 4d, row 2).

Thirty-one students reported that reagent helped implement
their AI integrations (Figure 4d, row 4): “What surprised me most
is how easy it was! The fact that Noggin gives you JS to copy-paste
into your code is very convenient, and it kind of feels accessible and
like anyone can do it. I was kind of intimidated to use AI for our final
team project, but this helped me get more comfortable with it.” - P2

Comparing models using reagent was helpful to 29 students
(Figure 4d, row 5), and students appreciated that they could quickly
switch between AI models, regardless of backend: “I think reagent
is very useful in that I can test different models and compare them
based on needs, credit cost, and model proficiency. It is very useful and
easy to use, and honestly broke down the barrier/fear of implementing
AI as it made tasks so much easier and simpler.” - P38

Configuring prompts separately from the invoking code was also
considered valuable, and reagent provided an easy on-ramp into
using the noggin in code: “I found the ability to use it in the browser
really helpful.” - P20; “I can easily prompt the model, and the code
for using the model as backend is already provided.” - P9

Students also helped to validate certain design decisions as help-
ing them achieve their goals and build understanding, as described
in Figure 4d and in participant comments: “limiting the amount of
credits assigned to a particular model can help mitigate the potential
losses from leaked api keys.” - P41; “Collaborate within a team is
more efficient with reagent.” - P33; “I liked that I was able to track
and compare the costs of an AI integration because I hadn’t considered
how cost was also a real-world tradeoff. Instead of spamming the calls
to the model, I tried to be smart about conserving my resources and
careful in tuning up my prompts.” - P39

6.2 Student experiences with AI

Through analysis of reagent use and student projects, we observed
how students design and develop with AI-backed components.

6.2.1 Leveraging model flexibility. Students frequently authored
noggins in ways that, intentionally or otherwise, took advantage
of the flexibility of large, pre-trained AI models.

When designing an LLM-backed API, the interface of the API can
be chosen by the developer, with the output structure expressed
to the model in a number of ways. This can flex to however the
student finds it natural to instruct the LLM or write their consum-
ing code. In an optional homework task attempted by 22 partici-
pants, students needed an LLM to output both a discrete choice
and a “reasoning” for this choice, parsing the response to separate
these two outputs. Students approached this in different ways: six

students used reagent’s “structured JSON output” feature; five
described a JSON-parsable output format manually in the prompt;
nine prompted the model to use some other format (e.g., separating
outputs with a colon or newline); and two used one noggin to make
the choice, then passed the result into a second “explainer” noggin.
In addition, four of these students offered some examples matching
the requested output format. Although reagent assists students
in scaffolding custom APIs, it does not over-prescribe the chosen
API interfaces, instead permitting the choice afforded by large AI
models’ flexibility in how the results of a model call will be used.

Model robustness can also help overcome inconsistencies in API
invocation, such as inputs in an unexpected format. In students’
final projects, we observed cases where the format of a noggin
variable’s value was slightly different between use in the reagent
UI and later use in code; for example, one student used the text
12:53 P.M. 8/6/24 in a prompt variable when testing in the
reagent UI and subsequently sent the text 8/6/2024, 11:25:52
PM to the noggin’s API, presumably generated by their code. The
underlying LLM responded in the same way both times despite the
differing date formats between requests.

Some prompt templates included minor errors, such as typos,
missing or extra whitespace, or grammatical errors in instructions.
We found that these errors largely did not prevent the model from
carrying out requested tasks, demonstrating a robustness not gen-
erally present when invoking non-AI-backed systems.

6.2.2 Errors in Invocation. Most participants (35 of 39), at some
point in their individual work, made at least one request to a noggin
that had some missing or malformed variable. Invocations with
missing variable values often caused the prompt to be nonsensical.
Some may have been intentional (e.g., from students testing how
their UI behaves when the user’s input is empty), but other non-
sense invocations were clearly mistakes. For example, 7 participants
sent the literal string [object Object] — a common mistakenly-
generated string in JavaScript code — to a noggin. Logs of whether
the noggin was invoked using the reagent UI or the hosted API
(implying an invocation from student code) showed that malformed
inputs frequently appear right at the moment when requests switch
from being made in the UI to being made in the code, further sug-
gesting that these are integration errors. Critically, such invocations
often did pass through to the underlying AI model, since they did
not contain errors in making the request to the noggin’s API.

7 Discussion

Many of our observations of student work and of reagent use
offer lessons for instructors who wish to incorporate AI-backed
prototyping into their courses.

7.1 Approachable Creation of Software

Components

reagent’s noggins suggest an architectural boundary that is espe-
cially valuable for students new to developing with AI models or
those less skilled at programming. By isolating and experimenting
with a prompt template separately from a codebase, students can
more easily observe what a model is doing and its role in the soft-
ware’s architecture. The exploration afforded by reagent allows

ITiCSE 2025, June 27-July 2, 2025, Nijmegen, Netherlands Timothy J. Aveni, James Smith, Björn Hartmann, and Armando Fox

students to build an understanding of costs of using AI models, as
well as capability limitations such as risks of hallucination.

It was common for students to use natural language techniques
to prompt an LLM to output in a particular format, or even to
use language instructions rather than programmatic techniques to
achieve certain behavior, effectively “programming in the prompt”.

For example, one participant directed an LLM’s output using
this instruction: Also, remember to change all "/n" in the
text into "
"! This is also IMPORTANT!! Because we
are using the text in HTML. Notably, this prompt contains a
typo (using /n rather than \n to refer to the escaped newline in the
JSON output). If this exact instruction had been expressed instead
with code (e.g., with a string .replace() call), it would not have
worked as the student intended, but the LLM’s outputs when the
prompt included this snippet were in line with the student’s intent.

Another participant used a JSON object obtained from the Yelp
API as an input variable to a noggin, authoring the following in-
struction to the model: Please filter the restaurants that
are currently open. The array could instead have been filtered
programmatically, using the Boolean field called is_open_now.

These code-like instructions within prompts suggest a fuzzy
boundary in hybrid code/prompt applications, in which students
can either use code or a runtime AI call to solve a task. Instructors
should consider how to teach students about this choice, given
contextual considerations such as students’ programming ability or
tradeoffs between robustness, efficiency, and prototyping speed.

7.2 Robustness is a Risk

As discussed in Section 6.2.1, large AI models offer a robustness that
can help applications deal with a wide range of inputs. A traditional
API may slow down a user who doesn’t understand the nature of
the inconsistency and simply receives an error, but a noggin will
accept imperfect inputs. However, we observed that this robustness
presents a risk: rather than responding with an error message when
a mistake is made, a model may simply “do its best”, resulting in
suboptimal or even completely fabricated results.

Not every student caught invocation errors before finishing their
work. For example, one participant left an invocation error in their
final submission of the recommendation homework task (send-
ing [object Object]), and the noggin continued to dutifully re-
spond with an arbitrary “recommendation”! In another team’s final
project demonstration, a “document summarization” feature tended
to write vague summaries, and the student simply reported that the
feature “doesn’t always work so well” — upon our later inspection
of the API call, the input had not been populated at all, and the
summary had been a hallucination.

In cases where errors were ultimately corrected, we cannot know
for sure whether reagent’s input visibility features assisted stu-
dents in locating the bug, except when reported: “I find it most
helpful when model output isn’t quite working, I can check whether
something is wrong with the input using reagent” - P41. However,
we believe that reagent helped many students overcome a baseline
difficulty in noticing and diagnosing these issues.

7.3 Building Deeper Understanding

Enabling students to experiment directly with AI models permits
them to form nuanced understanding of AI capabilities. As P39

describes: “I learned in class that LLMs are not good at doing math,
so I just thought it couldn’t compute equations. After fiddling around
with Reagent, turns out that LLMs also cannot count . . . I didn’t realize
counting was part of the math it couldn’t do. I’ve been able to get a
better understanding of concepts in class by actively using reagent.”

Not all conceptual misunderstandings are easy for students to
self-diagnose, however. While providing API visibility can help stu-
dents uncover invocation errors, robustness presents an additional
risk in the formation of students’ conceptual models of the use of AI
models. For example, we observed students prompting non-tool-use
LLMs to look up information on the Internet; students incorrectly
prompting Stable Diffusion using direct instructions (e.g., “Generate
an image that...”); and students incorrectly formatting chat-based
prompts, e.g., placing user queries in “Assistant:” blocks.

Even in these cases, models often respond similarly to how they
would when prompted correctly. Therefore, these errors can go
unnoticed by students, more easily than invocation errors that can
be noticed by inspecting model inputs. We often observed models
responding to this kind of query with hallucinated information
(in the case of demands for Internet lookups) or subpar results (in
the case of incorrect TTI prompt structure). Students sought less
aid from course staff in integrating their code with reagent than
the authors have come to expect from courses that make use of
traditional APIs. Where a mistake in a traditional API typically
results in an error that causes students to seek help in office hours,
AI APIs may not complain at all.

That does not preclude errors, however. Since model robustness
can obscure fundamental misunderstandings, instructor visibility
into AI prompts is invaluable for keeping an eye on students’ mas-
tery without needing to dig into student code. One potential direc-
tion of future work would be to give educators high-level visibility
into certain types of suspect prompting strategies, like “linters”
for the fuzzier world of AI prompting, to provide more proactive
insights into where misunderstandings need to be corrected.

Other features of reagent designed primarily to address logis-
tical challenges proved to be valuable in building targeted under-
standing. Routing requests through reagent helps students switch
quickly between AI models, helping to focus attention on more
general principles of AI capabilities, rather than on specifics about
provider APIs. Clear, centralized budgets help students to find the
right tools for open-ended projects without needing to shuffle bud-
get between platforms and to reason about AI model costs within
the context of their projects.

8 Conclusion

We introduce reagent, a tool that enables students to explore
integrating AI into software prototypes. Our deployment provided
value to students, reducing friction and supporting collaborative
engineering of intelligent applications. reagent offered insight
into students’ use and understanding of AI models, and we hope to
keep using reagent as the AI landscape continues to evolve.

Acknowledgments

This work was supported in part by grant #00005919 from the
California Education Learning Lab (calearninglab.org), an initiative
of the California Governor’s Office of Planning and Research. We
also thank Shm Garanganao Almeda for assisting with our study.

Supporting Students in Prototyping AI-backed Software with Hosted Prompt Template APIs ITiCSE 2025, June 27-July 2, 2025, Nijmegen, Netherlands

References

[1] 2025. Docs - Replicate. https://replicate.com/docs/
[2] 2025. Overview - OpenAI API. https://platform.openai.com
[3] 2025. Welcome to Claude. https://docs.anthropic.com/en/docs/welcome
[4] Stephen H. Bach, Victor Sanh, Zheng-Xin Yong, Albert Webson, Colin Raffel,

Nihal V. Nayak, Abheesht Sharma, Taewoon Kim, M. Saiful Bari, Thibault Fevry,
Zaid Alyafeai, Manan Dey, Andrea Santilli, Zhiqing Sun, Srulik Ben-David, Can-
wen Xu, Gunjan Chhablani, Han Wang, Jason Alan Fries, Maged S. Al-shaibani,
Shanya Sharma, Urmish Thakker, Khalid Almubarak, Xiangru Tang, Dragomir
Radev, Mike Tian-Jian Jiang, and Alexander M. Rush. 2022. PromptSource: An
Integrated Development Environment and Repository for Natural Language
Prompts. https://doi.org/10.48550/arXiv.2202.01279 arXiv:2202.01279 [cs].

[5] Brett A. Becker, Paul Denny, James Finnie-Ansley, Andrew Luxton-Reilly, James
Prather, and Eddie Antonio Santos. 2023. Programming Is Hard - Or at Least It
Used to Be: Educational Opportunities and Challenges of AI Code Generation. In
Proceedings of the 54th ACM Technical Symposium on Computer Science Education
V. 1 (SIGCSE 2023). Association for Computing Machinery, New York, NY, USA,
500–506. https://doi.org/10.1145/3545945.3569759

[6] Jie Chao, Bill Finzer, Carolyn P. Rosé, Shiyan Jiang, Michael Yoder, James Fiacco,
Chas Murray, Cansu Tatar, and Kenia Wiedemann. 2022. StoryQ: A Web-Based
Machine Learning and Text Mining Tool for K-12 Students. In Proceedings of
the 53rd ACM Technical Symposium on Computer Science Education V. 2 (SIGCSE
2022). Association for Computing Machinery, New York, NY, USA, 1178. https:
//doi.org/10.1145/3478432.3499267

[7] Peitong Duan, Jeremy Warner, Yang Li, and Bjoern Hartmann. 2024. Generating
Automatic Feedback on UI Mockups with Large Language Models. In Proceedings
of the 2024 CHI Conference on Human Factors in Computing Systems (CHI ’24).
Association for Computing Machinery, New York, NY, USA, 1–20. https://doi.
org/10.1145/3613904.3642782

[8] Brian Harvey, Daniel D. Garcia, Tiffany Barnes, Nathaniel Titterton, Daniel
Armendariz, Luke Segars, Eugene Lemon, Sean Morris, and Josh Paley. 2013.
SNAP! (build your own blocks) (abstract only). In Proceeding of the 44th ACM
technical symposium on Computer science education (SIGCSE ’13). Association
for Computing Machinery, New York, NY, USA, 759. https://doi.org/10.1145/
2445196.2445507

[9] Nicholas Jennings, HanWang, Isabel Li, James Smith, and Bjoern Hartmann. 2024.
What’s the Game, then? Opportunities and Challenges for Runtime Behavior
Generation. In Proceedings of the 37th Annual ACM Symposium on User Interface
Software and Technology (UIST ’24). Association for Computing Machinery, New
York, NY, USA, 1–13. https://doi.org/10.1145/3654777.3676358

[10] Peiling Jiang, Jude Rayan, Steven P. Dow, and Haijun Xia. 2023. Graphologue:
Exploring large language model responses with interactive diagrams. In Pro-
ceedings of the 36th annual ACM symposium on user interface software and tech-
nology (Uist ’23). Association for Computing Machinery, New York, NY, USA.
https://doi.org/10.1145/3586183.3606737 Number of pages: 20 Place: San Fran-
cisco, CA, USA tex.articleno: 3.

[11] Ishika Joshi, Ritvik Budhiraja, Harshal Dev, Jahnvi Kadia, Mohammad Osama
Ataullah, Sayan Mitra, Harshal D. Akolekar, and Dhruv Kumar. 2024. Chat-
GPT in the Classroom: An Analysis of Its Strengths and Weaknesses for Solving
Undergraduate Computer Science Questions. In Proceedings of the 55th ACM
Technical Symposium on Computer Science Education V. 1 (SIGCSE 2024). As-
sociation for Computing Machinery, New York, NY, USA, 625–631. https:
//doi.org/10.1145/3626252.3630803

[12] Gloria Ashiya Katuka, Srijita Chakraburty, Hyejeong Lee, Sunny Dhama, Toni
Earle-Randell, Mehmet Celepkolu, Kristy Elizabeth Boyer, Krista Glazewski,
Cindy Hmelo-Silver, and Tom Mcklin. 2024. Integrating Natural Language Pro-
cessing in Middle School Science Classrooms: An Experience Report. In Pro-
ceedings of the 55th ACM Technical Symposium on Computer Science Education

V. 1 (SIGCSE 2024). Association for Computing Machinery, New York, NY, USA,
639–645. https://doi.org/10.1145/3626252.3630881

[13] Majeed Kazemitabaar, Xinying Hou, Austin Henley, Barbara Jane Ericson, David
Weintrop, and Tovi Grossman. 2024. How Novices Use LLM-based Code Gen-
erators to Solve CS1 Coding Tasks in a Self-Paced Learning Environment. In
Proceedings of the 23rd Koli Calling International Conference on Computing Edu-
cation Research (Koli Calling ’23). Association for Computing Machinery, New
York, NY, USA, 1–12. https://doi.org/10.1145/3631802.3631806

[14] Majeed Kazemitabaar, Runlong Ye, Xiaoning Wang, Austin Zachary Henley,
Paul Denny, Michelle Craig, and Tovi Grossman. 2024. CodeAid: Evaluating a
Classroom Deployment of an LLM-based Programming Assistant that Balances
Student and Educator Needs. In Proceedings of the 2024 CHI Conference on Human
Factors in Computing Systems (CHI ’24). Association for Computing Machinery,
New York, NY, USA, 1–20. https://doi.org/10.1145/3613904.3642773

[15] Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav
Santhanam, Sri Vardhamanan, Saiful Haq, Ashutosh Sharma, Thomas T. Joshi,
Hanna Moazam, Heather Miller, Matei Zaharia, and Christopher Potts. 2023.
DSPy: CompilingDeclarative LanguageModel Calls into Self-Improving Pipelines.
https://doi.org/10.48550/arXiv.2310.03714 arXiv:2310.03714 [cs].

[16] Amy J. Ko, Brad A. Myers, and Htet Htet Aung. 2004. Six learning barriers in
end-user programming systems. In 2004 IEEE symposium on visual languages -
human centric computing. 199–206. https://doi.org/10.1109/VLHCC.2004.47

[17] Michelle S. Lam, Janice Teoh, James A. Landay, Jeffrey Heer, and Michael S.
Bernstein. 2024. Concept induction: Analyzing unstructured text with high-level
concepts using LLooM. In Proceedings of the CHI conference on human factors in
computing systems (Chi ’24). Association for Computing Machinery, New York,
NY, USA. https://doi.org/10.1145/3613904.3642830 Number of pages: 28 Place:
Honolulu, HI, USA tex.articleno: 766.

[18] Krista Opsahl-Ong, Michael J. Ryan, Josh Purtell, David Broman, Christopher
Potts, Matei Zaharia, and Omar Khattab. 2024. Optimizing Instructions and
Demonstrations for Multi-Stage Language Model Programs. https://doi.org/10.
48550/arXiv.2406.11695 arXiv:2406.11695 [cs].

[19] Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy
Liang, and Michael S. Bernstein. 2023. Generative Agents: Interactive Simu-
lacra of Human Behavior. In Proceedings of the 36th Annual ACM Symposium on
User Interface Software and Technology (UIST ’23). Association for Computing
Machinery, New York, NY, USA, 1–22. https://doi.org/10.1145/3586183.3606763

[20] Savvas Petridis, Michael Xieyang Liu, Alexander J. Fiannaca, Vivian Tsai, Michael
Terry, and Carrie J. Cai. 2024. In Situ AI Prototyping: Infusing Multimodal
Prompts into Mobile Settings with MobileMaker. https://doi.org/10.48550/arXiv.
2405.03806 arXiv:2405.03806 [cs].

[21] Savvas Petridis, Michael Terry, and Carrie J Cai. 2024. PromptInfuser: How
tightly coupling AI and UI design impacts designers’ workflows. In Proceedings
of the 2024 ACM designing interactive systems conference (Dis ’24). Association
for Computing Machinery, New York, NY, USA, 743–756. https://doi.org/10.
1145/3643834.3661613 Number of pages: 14 Place: IT University of Copenhagen,
Denmark.

[22] Sangho Suh, Bryan Min, Srishti Palani, and Haijun Xia. 2023. Sensecape: En-
abling multilevel exploration and sensemaking with large language models. In
Proceedings of the 36th annual ACM symposium on user interface software and
technology (Uist ’23). Association for Computing Machinery, New York, NY,
USA. https://doi.org/10.1145/3586183.3606756 Number of pages: 18 Place: San
Francisco, CA, USA tex.articleno: 1.

[23] J. D. Zamfirescu-Pereira, Laryn Qi, Björn Hartmann, John DeNero, and Narges
Norouzi. 2024. 61A Bot Report: AI Assistants in CS1 Save Students Homework
Time and Reduce Demands on Staff. (Now What?). https://doi.org/10.1145/
3641554.3701864 arXiv:2406.05600 [cs].

https://replicate.com/docs/
https://platform.openai.com
https://docs.anthropic.com/en/docs/welcome
https://doi.org/10.48550/arXiv.2202.01279
https://doi.org/10.1145/3545945.3569759
https://doi.org/10.1145/3478432.3499267
https://doi.org/10.1145/3478432.3499267
https://doi.org/10.1145/3613904.3642782
https://doi.org/10.1145/3613904.3642782
https://doi.org/10.1145/2445196.2445507
https://doi.org/10.1145/2445196.2445507
https://doi.org/10.1145/3654777.3676358
https://doi.org/10.1145/3586183.3606737
https://doi.org/10.1145/3626252.3630803
https://doi.org/10.1145/3626252.3630803
https://doi.org/10.1145/3626252.3630881
https://doi.org/10.1145/3631802.3631806
https://doi.org/10.1145/3613904.3642773
https://doi.org/10.48550/arXiv.2310.03714
https://doi.org/10.1109/VLHCC.2004.47
https://doi.org/10.1145/3613904.3642830
https://doi.org/10.48550/arXiv.2406.11695
https://doi.org/10.48550/arXiv.2406.11695
https://doi.org/10.1145/3586183.3606763
https://doi.org/10.48550/arXiv.2405.03806
https://doi.org/10.48550/arXiv.2405.03806
https://doi.org/10.1145/3643834.3661613
https://doi.org/10.1145/3643834.3661613
https://doi.org/10.1145/3586183.3606756
https://doi.org/10.1145/3641554.3701864
https://doi.org/10.1145/3641554.3701864

	Abstract
	1 Introduction
	2 Related Work
	3 Course Context
	4 reagent
	4.1 Design goals
	4.2 Noggins: Creating Single-Purpose Tools within reagent

	5 Programming Assignment
	6 Observations
	6.1 Building and Exploring with reagent
	6.2 Student experiences with AI

	7 Discussion
	7.1 Approachable Creation of Software Components
	7.2 Robustness is a Risk
	7.3 Building Deeper Understanding

	8 Conclusion
	Acknowledgments
	References

