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Abstract

Large AI models, such as LLMs and text-to-image models, can be
used to power intelligent components of software applications. In
our User Interface Design and Development course, we sought to
encourage students to practice integrating AI-powered capabilities
into their software prototypes. We developed reagent, an open
source Web platform that facilitates student exploration through
iterative authorship of prompt templates, then hosts AI model APIs
for those templates with billing configured by instructors. After an
introductory homework assignment, students were encouraged to
invent their own AI features in an open-ended final team project.
Students widely reported that their experiences with AI in this
course were valuable, offering a deeper understanding of the ca-
pabilities and limitations of using AI in software. By supporting
authorship, facilitating integration, providing visibility, and reduc-
ing administrative hurdles, reagent facilitated both student explo-
ration and instructors’ involvement. We offer insight we gleaned
as instructors into how students form conceptual models about AI.
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• Human-centered computing → User interface program-
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1 Introduction

Generative AI models, like large language models (LLMs) and text-
to-image (TTI) models, have a breadth of uses. Although many
users’ interactions with these models happen in the context of a
direct chat interface (e.g. ChatGPT), these models can also be used
to power intelligent components of software applications, especially
when used alongside prompt templates (as seen in novel UIs that
incorporate features powered by generative AI, e.g. [12], [6], [16]).

Such interfaces combine traditional methods of software engi-
neering with calls to prompt-based AI models. This component-
based approach toward generative AI application features, com-
pared to straightforward chatbot implementations, can enable de-
velopers to build features that are more powerful (as in [13], which
orchestrates AI behaviors using a framework external to the AI)
and more contextually-appropriate (as in [3], which guides an LLM
to produce actionable outputs within design software). Such archi-
tectures are additionally important because they enable software
designers to place guardrails that preclude undesired behaviors that
could arise in open-ended applications (giving away an assignment
solution [10] or obviating a puzzle [5]).

It is therefore important to expose students to this new way of
constructing interactive software, enabling them to explore capa-
bilities and limitations to become thoughtful designers of future
AI-powered software. Constructing, testing, and integrating prompt
templates into software presents technical and logistical difficul-
ties to students, however. We integrated AI-powered applications
into a project-based UI design and development course, and built a
software platform, reagent, to support the following goals:

• Support collaborative, iterative authorship and testing of
prompt templates to be used in software prototypes

• Facilitate transition from exploration to integration, mini-
mizing technical complexity

• Provide visibility of classwork to instructors
• Reduce administrative hurdles for course-scale deployment

We deployed reagent in our course and analyze students’ work,
revealing both opportunities and risks in engaging students in
building AI-powered software.

2 Related Work

CS educators are currently grappling with impacts of AI on cur-
riculum in a number of ways. There is much recent work exploring
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students’ experiences using commercial generative AI products,
such as ChatGPT and GitHub Copilot [1]. For example, students
use LLMs to assist with code debugging [9] or in authoring code
or assignment solutions [7, 9]. The research community has also
investigated the development of custom tooling designed to help
teach computer science material in pedagogically effective ways,
or to scale teaching resources [10, 17].

In contrast, other work has focused on teaching students how
to introduce intelligent features to their own software through
traditional machine learning approaches (training, testing, and
deploying a model) [2, 8]. Prompt-based models provide for an even
lower barrier to entry for software integration, offering description-
based invocation of a wide range of model capabilities.

Our perspective focuses on helping students understand how to
integrate generative AI functionality into open-ended software de-
sign projects. This motivation connects to other research that aims
to use generative AI as a design material (e.g. [14, 15]), allowing
designers to prototype UI behavior with little technical skill. Our
focus is on CS students with a design task that requires implement-
ing functional software that mediates both intelligent UI features
and traditional user interactions through code.

3 Course Context

We teach an upper-division User Interface Design and Development
course within the computer science program at a US-based research
university. In the course, students learn about principles of HCI
and UI design, then put those principles into practice in homework
assignments and a final open-ended team project.

4 reagent

We identified an opportunity to facilitate students’ exploration
of AI through the development of a course technology platform.
reagent is a hosted, open source Web tool that offers students a
rich, collaborative authoring interface for prompt-based AI models,
then automatically stands up a “batteries-included” API gateway
that can be used from any code.

4.1 Design goals

Our goals in designing reagent were inspired by our prior expe-
rience as instructors, both of this course and of other design and
programming courses.

4.1.1 Support collaborative, iterative authorship and testing. LLMs
and TTI models are commonly used even by people with little
technical background; directing these models to perform particular
tasks is possible through just natural language. We wanted to create
an environment for students to experiment with authoring prompts
and evaluating model output in advance of writing code. The even-
tual goal of integrating prompts into software requires a skillset
beyond just authoring prompts, however: students need to author
reusable prompt templates that operate on diverse inputs. Thus,
we designed reagent to empower students to test their prompts
on varying inputs, refine their templates iteratively, and engineer
prompts collaboratively with peers and instructors.

4.1.2 Facilitate transition from exploration to integration. As in-
structors, we have observed that even simple (non-AI) APIs typically

require some technical skill to set up and use, requiring that students
configure and manage API keys, understand documentation, and
format inputs and outputs to “glue” the API into student code. These
are valuable skills to teach CS students but are often incidental to
an assignment’s learning objectives and can consume an inordi-
nate amount of students’ debugging time. Although we teach an
upper-division course, we sought to build an approachable ecosys-
tem that could support courses targeted even at non-programmers,
e.g. hardware design and prototyping courses in which students
typically write only “glue” code.

Prompt templates created within the reagent UI, therefore, are
immediately available in a simple-to-use API whose invocations
are visible in the same place and form as manual runs. To overcome
information barriers (as in [11]), students need to feel empowered
to inspect their programs. When something goes wrong in an in-
telligent software feature, the application boundary between the
student’s code and the AI model is a valuable starting point for
debugging: did the correct data make it into the prompt from the
software? Did the AI respond sensibly, and in a format the student’s
code can use? We designed reagent to provide visibility into con-
structed prompt inputs and AI outputs for all API calls, offering a
default logging baseline that can help debug and attribute errors.

Prompt-based AI models, given their flexibility and ease of use,
are a unique target for an “out of order” approach; we believe that
students are ready to experiment with including intelligent features
in their applications even before they are comfortable with the
more advanced skills typically required to interface with an API.
Additionally, even when prompt-based AI models are not strictly
necessary to carry out a task (e.g. sentiment analysis), authoring
and using a prompt template can be a very quick, developer-friendly
way to prototype a functional intelligent backend. By streamlining
the creation of AI tools that would, without prompt-based tech-
niques, require heavy one-off technical configuration, reagent
enables faster, lower-commitment prototyping with AI features.

4.1.3 Provide visibility to instructors. Because prompts are located
in reagent rather than in student code, it is important for instruc-
tors to be able to see and potentially make edits to prompts, e.g.
when grading or when demonstrating ideas. By creating a software
architecture boundary at the prompt template level, we enable in-
structors to inspect prompts in isolation, supporting instruction
related to prompt engineering, which has its own pedagogical con-
siderations separate from student-authored code. Instructors can
also leverage usage history, rather than just students’ final prompts,
to better understand how students are forming conceptual models
of generative AI, which we demonstrate in Sections 6 and 7.

4.1.4 Reduce administrative hurdles. Running LLMs and TTI mod-
els requires large amounts of compute power, typically offloaded
using an API to cloud machine. We hoped to centralize billing for
all course-related use so that we could pay for students’ experimen-
tation without each student needing to configure payment details,
which would pose a logistical barrier as well as a financial one.
With reagent, instructors can manage budgets both for student
teams and for individual teams. Additionally, building a backend-
agnostic system enables rapid switching between models, reducing
the friction of experimentation. With centralized billing, students
can use any model regardless of its backend and how it is paid for.
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4.2 Noggins: Creating Single-Purpose Tools

within reagent

4.2.1 Authoring APIs. After logging in with a GitHub account, stu-
dents are able to create a new noggin, a single-purpose “tool” backed
by a chosen AI model (from the supported backends OpenAI1, An-
thropic2, and Replicate3), alongside a stored prompt template and
model configuration. reagent supports both text and image output.

Noggins’ prompt templates are authored using a rich prompt
editor that supports chat turns (for use with “chat”-style LLMs) and
typed template variable placeholders (Figure 1, A). When author-
ing a prompt template, students implicitly construct an API input
interface through the insertion of text or image variables into their
prompt. For models that support output structure specification,
reagent provides a visual editor to customize the output format
of the noggin (Figure 1, C).

4.2.2 Using your Noggin. Students can experiment with their nog-
gin’s API in reagent’s “Use” pane (Figure 1, D). Students can specify
each noggin’s budget (specified in US cents) individually, subject to
a global instructor-chosen maximum over all of their budgets; runs
that would go over-budget are canceled. Responses are streamed
to a view showing exactly the prompt as it was sent to the model
(Figure 1, G). Students are also provided pre-filled code snippets
that can be used to invoke the noggin, either through a URL GET
request or a POST request in code (Figure 1, E). The noggin’s API
inputs match the variables from the prompt editor, effectively creat-
ing an API that abstracts away the underlying AI model and instead
presents a single-purpose tool.

Some API features were designed to mitigate risks from API
keys being leaked by students, e.g. to public GitHub repositories:
each noggin’s API key can be used only for that particular noggin,
inputs are truncated to prevent overly-long request parameters,
and noggin budgets are capped by default so that even leaked
keys cannot overspend. We did experience a student reporting the
accidental leakage of a reagentAPI key on a public code repository,
and we reassured the student that no harm was done.

The API backing each noggin is designed to be robust, searching
for API keys and variable inputs wherever they may be present in
the request (in URL parameters as well as in URL- or JSON-encoded
POST data) and accepting image inputs in a variety of formats
(base64 data URLs, inferring image types through their payload
data when the MIME prefix is missing, or external URLs fetched
by the API server). Features such as this added API robustness
and the API’s pre-emptive run cost prediction are designed with
an education context in mind, offering guardrails and assistance,
especially for students without much experience using APIs.

reagent shows students every run of the noggin, including those
made through the API. This provides a default logging baseline that
can help debug and attribute errors, showing exactly what the AI
“saw” and how it responded.

4.2.3 Collaboration. Students are added by their instructors to an
“organization” within reagent, which centralizes API billing by
routing noggin requests through an instructor-specified API key.

1https://platform.openai.com/docs/overview
2https://docs.anthropic.com/en/docs/welcome
3https://replicate.com/docs/

Figure 1: Screenshots of various components of reagent’s

UI. A: rich prompt editing interface; B: budget management;

C: output structure editor; D: a form with a field for each

variable; E: a code snippet that invokes the noggin; F: run

history of this noggin; G: a run visualized in “chat” style.
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Figure 2: Left: A noggin is invoked fromwithinGoogle Sheets.

Right: A different noggin is invoked within a Snap! program,

with its output used to alter control flow.

Students can choose even between different AI model providers
fluidly and never configure credentials or billing. Course staff can
choose how much total budget should be permitted across all of a
member’s noggins.

Instructors can form student teams with their own budget limits
separate from individual budget limits. Team noggins are shared
and editable by all team members. reagent’s rich prompt editor
supports live collaboration (in the style of Google Docs), allowing
for multiple students or instructors to edit prompts concurrently
during the design and debugging processes.

4.2.4 Interoperability. Because reagent exposes each noggin as a
simple HTTP API, noggins can be used portably even in environ-
ments where it is inconvenient to craft complex HTTP requests.
For example, Figure 2 demonstrates noggins being invoked within
Google Sheets and the block-based programming language Snap!
[4] with just an HTTP GET request, using reagent to “program”
the behavior of the AI backend. Since the API is constructed interac-
tively within the reagent UI, the actual invocation of the noggin is
simple enough for almost any programming-enabled environment.

5 Programming Assignment

We developed an assignment to introduce students both to reagent
and to using AI models within code. In four tasks, students cus-
tomize the behavior of AI models to fit into existing software, using
AI to create text and image processing tools to augment UI code. The
assignment serves as a sandbox where students can experiment and
begin to learn the considerations, potential, and shortcomings of
using AI components within software. Most students found this to
be an easy assignment; although there is iterative work in prompt-
ing the AI to produce useful responses, this is forgiving compared
to typical programming (there are no syntax errors in a prompt!).

Students were provided with starter UI code for each task, each
containing basic functionality but no intelligent features. Students
implemented intelligent features into UIs including text summariza-
tion, a recommendation system, an image generator, and a tool that
extracts form data from a photograph (Note: the full programming
assignment will be made available as supplementary material).

The assignment introduces the flexibility of pre-trained models
(e.g. the model’s ability to understand non-English text despite
being prompted in English); the use of model output beyond dis-
playing it to users (e.g. to take UI actions); the use of visual inputs
and outputs; and the potential for task failure, and UI design impli-
cations. We steer away from uses of AI that may have difficult-to-
notice flaws (e.g. tasks especially prone to hallucination); we use
more focused instruction during class time to address limitations
and ethical issues surrounding AI use. Students write a reflection

Figure 3: (a): Survey responses from before students begin

their first AI-related assignment and exposure to reagent.

(b): The same questions, asked at the end of the course.

(c): Post-survey of student perception of how much their

understanding comes from reagent use. (d): Post-survey of

student perception of how much reagent assisted in tasks

related to the integration of AI in software.

on UI design needs specific to AI and on potential downsides of
building intelligent features in this way. After completing the as-
signment, students begin to design and integrate AI features into
their final team projects. In these open-ended projects, students
implement working prototypes of software they have designed to
target the discovered needs of a chosen user group.

6 Observations

After a successful pilot deployment in spring 2024, we conducted
an IRB-approved research study in our summer 2024 semester,
collecting qualitative data about reagent use. All students were
permitted to use reagent, and course staff members were not
informed of the identities of consenting students until after final
grades were submitted. Of 69 students who completed the course,
39 consented to the use of their responses and work in this research.

6.1 Building and Exploring with reagent

Students made heavy use of reagent, both in individual homework
and their open-ended final project. Students reported an increased
understanding of how to integrate large AI models into their work.
Before the introduction of reagent, only 3 of 38 respondents agreed
or strongly agreed with the statement “I know how to implement AI
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integrations in software”; at the end of the semester, this grew to 28
of 35 respondents. Because we provided in-class instruction on AI
in addition to having students experiment using reagent, we also
asked students at the end of the semester where their understanding
of various understanding came from (see Figure 3c); these responses
skewed heavily in the direction of reagent offering significant
benefits. reagent assisted with many tasks in the integration of
AI into software, shown in the responses in Figure 3d (participants
who selected “N/A” are excluded from each bar).

Students were generally very positive in their evaluation of
reagent and its impact on their process. Some benefit of using
reagent came from its convenience for experimenting with large
AI models’ capabilities before integrating into code; 31 participants
reported that reagent helped with or was instrumental in experi-
menting with prompts (Figure 3d, row 2).

Thirty-one students reported that reagent helped implement
their AI integrations (Figure 3d, row 4): “What surprised me most
is how easy it was! The fact that Noggin gives you JS to copy-paste
into your code is very convenient, and it kind of feels accessible and
like anyone can do it. I was kind of intimidated to use AI for our final
team project, but this helped me get more comfortable with it.” - P2

Comparing models using reagent was helpful to 29 students
(Figure 3d, row 5), and students appreciated that they could quickly
switch between AI models, regardless of backend: “I think reagent
is very useful in that I can test different models and compare them
based on needs, credit cost, and model proficiency. It is very useful and
easy to use, and honestly broke down the barrier/fear of implementing
AI as it made tasks so much easier and simpler.” - P38

Configuring prompts separately from the invoking code was also
considered valuable, and reagent provided an easy on-ramp into
using the noggin in code: “I found the ability to use it in the browser
really helpful.” - P20; “I can easily prompt the model, and the code
for using the model as backend is already provided.” - P9

Students also helped to validate certain design decisions as help-
ing them achieve their goals and build understanding, as described
in Figure 3d and in participant comments: “limiting the amount of
credits assigned to a particular model can help mitigate the potential
losses from leaked api keys.” - P41; “Collaborate within a team is
more efficient with reagent.” - P33; “I liked that I was able to track
and compare the costs of an AI integration because I hadn’t considered
how cost was also a real-world tradeoff. Instead of spamming the calls
to the model, I tried to be smart about conserving my resources and
careful in tuning up my prompts.” - P39

6.2 Student experiences with AI

Through analysis of reagent use and student projects, we observed
how students design and develop with AI-backed components.

6.2.1 Leveraging model flexibility. Students frequently authored
noggins in ways that, intentionally or otherwise, took advantage
of the flexibility of large, pre-trained AI models.

When designing an LLM-backed API, the interface of the API can
be chosen by the developer, with the output structure expressed
to the model in a number of ways. This can flex to however the
student finds it natural to instruct the LLM or write their consum-
ing code. In an optional homework task attempted by 22 partici-
pants, students needed an LLM to output both a discrete choice

and a “reasoning” for this choice, parsing the response to separate
these two outputs. Students approached this in different ways: six
students used reagent’s “structured JSON output” feature; five
described a JSON-parsable output format manually in the prompt;
nine prompted the model to use some other format (e.g. separating
outputs with a colon or newline); and two used one noggin to make
the choice, then passed the result into a second “explainer” noggin.
In addition, four of these students offered some examples matching
the requested output format. Although reagent assists students
in scaffolding custom APIs, it does not over-prescribe the chosen
API interfaces, instead permitting the choice afforded by large AI
models’ flexibility in how the results of a model call will be used.

Model robustness can also help overcome inconsistencies in API
invocation, such as inputs in an unexpected format. In students’
final projects, we observed cases where the format of a noggin
variable’s value was slightly different between use in the reagent
UI and later use in code; for example, one student used the text
12:53 P.M. 8/6/24 in a prompt variable when testing in the
reagent UI and subsequently sent the text 8/6/2024, 11:25:52
PM to the noggin’s API, presumably generated by their code. The
underlying LLM responded in the same way both times despite the
differing date formats between requests.

Some prompt templates included minor errors, e.g. typos, miss-
ing or extra whitespace, or grammatical errors in English-language
instructions. We found that these errors largely did not prevent the
model from carrying out requested tasks, demonstrating a robust-
ness not generally present when invoking non-AI-backed systems.

6.2.2 Errors in Invocation. Most participants (35 of 39), at some
point in their individual work, made at least one request to a noggin
that had some missing or malformed variable. Invocations with
missing variable values often caused the prompt to be nonsensical.
Some may have been intentional (e.g. from students testing how
their UI behaves when the user’s input is empty), but other non-
sense invocations were clearly mistakes. For example, 7 participants
sent the literal string [object Object] — a common mistakenly-
generated string in JavaScript code — to a noggin. Logs of whether
the noggin was invoked using the reagent UI or the hosted API
(implying an invocation from student code) showed that malformed
inputs frequently appear right at the moment when requests switch
from being made in the UI to being made in the code, further sug-
gesting that these are integration errors. Critically, such invocations
often did pass through to the underlying AI model, since they did
not contain errors in making the request to the noggin’s API.

7 Discussion

Many of our observations of student work and of reagent use
offer lessons for instructors who wish to incorporate AI-backed
prototyping into their courses.

7.1 Approachable Creation of Software

Components

reagent’s noggins suggest an architectural boundary that is espe-
cially valuable for students new to developing with AI models or
those less skilled at programming. By isolating and experimenting
with a prompt template separately from a codebase, students can
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more easily observe what a model is doing and its role in the soft-
ware’s architecture. The exploration afforded by reagent allows
students to build an understanding of costs of using AI models, as
well as capability limitations such as risks of hallucination.

It was common for students to use natural language techniques
to prompt an LLM to output in a particular format, or even to
use language instructions rather than programmatic techniques to
achieve certain behavior, effectively “programming in the prompt”.

For example, one participant directed an LLM’s output using
this instruction: Also, remember to change all "/n" in the
text into "<br>"! This is also IMPORTANT!! Because we
are using the text in HTML. Notably, this prompt contains a
typo (using /n rather than \n to refer to the escaped newline in the
JSON output). If this exact instruction had been expressed instead
with code (e.g. with a string .replace() call), it would not have
worked as the student intended, but the LLM’s outputs when the
prompt included this snippet were in line with the student’s intent.

Another participant used a JSON object obtained from the Yelp
API as an input variable to a noggin, authoring the following in-
struction to the model: Please filter the restaurants that
are currently open. The array could instead have been filtered
programmatically, using the Boolean field called is_open_now.

These instances of code-like instructions within prompts suggest
a fuzzy boundary in hybrid code/prompt applications, in which
students can either use code or a runtime AI call to solve a task.
Instructors should consider how to teach students about this choice,
given contextual considerations such as students’ programming
ability or tradeoffs between robustness, runtime efficiency, and
prototyping speed.

7.2 Robustness is a Risk

As discussed in Section 6.2.1, large AI models offer a robustness that
can help applications deal with a wide range of inputs. A traditional
API may slow down a user who doesn’t understand the nature of
the inconsistency and simply receives an error, but a noggin will
accept imperfect inputs.

However, we observed that this robustness presents a risk: rather
than receiving an error message when a mistake is made, a model
may simply “do its best”, resulting in suboptimal or even completely
fabricated results. Not every student caught invocation errors be-
fore finishing their work; for example, one participant’s submission
for the recommendation homework task was programmed to in-
voke the noggin with [object Object] as the user’s query input,
and the noggin continued to dutifully respond with an arbitrary
“recommendation”! One author even witnessed, during a team’s
final project demonstration, a noggin whose “document summa-
rization” results were not very related to the input document, and
the student simply reported that the feature “doesn’t always work
so well” — upon later inspection of the API call, the input had not
been populated at all, and the summary had been a hallucination.

In cases where errors were ultimately corrected, we cannot know
for sure whether reagent’s input visibility features assisted stu-
dents in locating the bug, except when reported: “I find it most
helpful when model output isn’t quite working, I can check whether
something is wrong with the input using reagent” - P41. However,
we believe that reagent helped many students overcome a baseline
difficulty in noticing and diagnosing these issues.

7.3 Building Deeper Understanding

Enabling students to experiment directly with AI models permits
them to form nuanced understanding of AI capabilities. As P39
describes: “I learned in class that LLMs are not good at doing math,
so I just thought it couldn’t compute equations. After fiddling around
with Reagent, turns out that LLMs also cannot count . . . I didn’t realize
counting was part of the math it couldn’t do. I’ve been able to get a
better understanding of concepts in class by actively using reagent.”

Not all conceptual misunderstandings are easy for students to
self-diagnose, however. While providing API visibility can help stu-
dents uncover invocation errors, robustness presents an additional
risk in the formation of students’ conceptual models of the use of
large AI models. For example, we observed students prompting an
LLM to look up information on the Internet; students incorrectly
prompting TTI models using direct instructions (e.g. “Generate
an image that...” ); and students incorrectly formatting chat-based
prompts, e.g. placing user queries in “Assistant:” blocks.

Even in these cases, models often respond similarly to how they
would when prompted correctly. Therefore, these errors can go un-
noticed by students, more easily than simple invocation errors. We
often observed models responding to this kind of query with hallu-
cinated information (in the case of demands for Internet lookups)
or subpar results (in the case of incorrect TTI prompt structure).
Students sought less aid from course staff in integrating their code
with reagent than the authors have come to expect from courses
that make use of traditional APIs. Where a mistake in a traditional
API typically results in an error that causes students to seek help
in office hours, AI APIs may not complain at all.

That does not preclude errors, however. Since model robustness
can obscure fundamental misunderstandings, we believe that the
direct visibility into students’ AI prompting afforded by reagent is
invaluable in helping instructors keep an eye on students’ mastery
without needing to dig into student code. One potential direction
of future work would be to give educators high-level visibility into
certain types of suspect prompting strategies, like “linters” for the
fuzzier world of AI prompting, to provide more proactive insights
into where misunderstandings need to be corrected.

Other features of reagent designed primarily to address lo-
gistical challenges proved to be valuable in building targeted un-
derstanding. By routing requests through reagent, instructors
help students switch quickly between AI models from different
providers without dealing with the friction of changing the back-
end API, which helps to focus students’ attention on building an
understanding of the general capabilities of AI models, rather than
learning specifics about provider APIs. By giving students clear,
centralized budgets, instructors can help students explore to find
the right tools for open-ended projects without needing to shuffle
budget between platforms. In addition, visibility into these budgets
permits students to reason about AI model costs within the context
of their projects.

8 Conclusion

We introduce reagent, a tool that enables students to explore
integrating AI into software prototypes. Our deployment was suc-
cessful, providing value to students and giving us a lens into consid-
erations for instructors considering developing similar assignments.
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